已知f(x)=x-sinx,x1,x2,x3∈R,且x1+x2>0,x2+x3>0,x1+x3>0,則f(x1)+f(x2)+f(x3)( )
A.是正數(shù)
B.是負(fù)數(shù)
C.是零
D.不能確定
【答案】分析:通過(guò)函數(shù)的表達(dá)式,判斷函數(shù)的單調(diào)性,與奇偶性,根據(jù)任意的x1+x2>0,x2+x3>0,x1+x3>0,判斷f(x1)+f(x2)+f(x3)的符號(hào).
解答:解:函數(shù)f(x)=x-sinx,(x∈R)是奇函數(shù),而且f′(x)=1-cosx,f′(x)≥0;
函數(shù)是減函數(shù),f(0)=0,
所以對(duì)于任意的x1+x2>0,x2+x3>0,x3+x1>0,x1>-x2,x2>-x3,x3>-x1
所以,f(x1)>f(-x2)=-f(x2),f(x2)>f(-x3)=-f(x3),f(x3)>f(-x1)=-f(x1),
即f(x1)+f(x2)>0,f(x2)+f(x3)>0,f(x3)+f(x1>0,
所以f(x1)+f(x2)+f(x3)>0.
故選A.
點(diǎn)評(píng):本題考查了不等式,函數(shù)的導(dǎo)數(shù)的應(yīng)用,函數(shù)的單調(diào)性奇偶性,考查學(xué)生的邏輯推理能力,計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ln(ax+b)的圖象在x=1處的切線方程為y=
1
2
x-
1
2
+ln2.
(1)證明:方程f(x)-x=0有且只有一個(gè)實(shí)根;
(2)若s,t∈(0,+∞),且s<t時(shí),試證明:(1+s)ef(t-1)>(1+t)ef(s-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(
2
,-1),
b
=(
2
2
,2).f(x)=x2+
a
2x+
a
b
,數(shù)列{an}滿足a1=1,3an=f (an-1)+1
(n∈N,n≥2),數(shù)列{bn}前n項(xiàng)和為Sn,且bn=
1
an+3

(1)寫(xiě)出y=f (x)的表達(dá)式;
(2)判斷數(shù)列{an}的增減性;
(3)是否存在n1,n2(n1,n2∈N*),使S n1≥1或S n2
1
4
,如果存在,求出n1或n2的值,如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x(x-a)(x-b),點(diǎn)A(s,f(s)),B(t,f(t)).
(Ⅰ)若a=b=1,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若函數(shù)f(x)的導(dǎo)函數(shù)f'(x)滿足:當(dāng)|x|≤1時(shí),有|f'(x)|≤
3
2
恒成立,求函數(shù)f(x)的解析表達(dá)式;
(Ⅲ)若0<a<b,函數(shù)f(x)在x=s和x=t處取得極值,且a+b=2
3
,證明:
OA
OB
不可能垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x2-alnx在(1,2]上是增函數(shù),g(x)=x-a
x
在(0,1)上是減函數(shù).
(1)求a的值;
(2)設(shè)函數(shù)φ(x)=2bx-
1
x2
在(0,1]上是增函數(shù),且對(duì)于(0,1]內(nèi)的任意兩個(gè)變量s,t,恒有f(s)≥φ(t)成立,求實(shí)數(shù)b的取值范圍;
(3)設(shè)h(x)=f′(x)-g(x)-2
x
+
3
x
,求證:[h(x)]n+2≥h(xn)+2n(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)已知函數(shù)f(x)=xlnx.

(1)求函數(shù)f(x)的單調(diào)區(qū)間和最小值;

(2)當(dāng)b>0時(shí),求證:bb(其中e=2.718 28…是自然對(duì)數(shù)的底數(shù));

(3)若a>0,b>0,證明f(a)+(a+b)ln2≥f(a+b)-f(b).

(文)已知向量m=(x2,y-cx),n=(1,x+b)(x,y,b,c∈R)且mn,把其中x,y所滿足的關(guān)系式記為y=f(x).若f′(x)為f(x)的導(dǎo)函數(shù),F(x)=f(x)+af′(x)(a>0),且F(x)是R上的奇函數(shù).

(1)求和c的值.

(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間(用字母a表示).

(3)當(dāng)a=2時(shí),設(shè)0<t<4且t≠2,曲線y=f(x)在點(diǎn)A(t,f(t))處的切線與曲線y=f(x)相交于點(diǎn)B(m,f(m))(A與B不重合),直線x=t與y=f(m)相交于點(diǎn)C,△ABC的面積為S,試用t表示△ABC的面積S(t),并求S(t)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案