1.利用夾逼準(zhǔn)則求極限$\underset{lim}{n→∞}$$\frac{{2}^{n}}{n!}$.

分析 討論n=1,2,3,及n≥4,n∈N時(shí),2n與n!的關(guān)系,即可得到所求極限.

解答 解:當(dāng)n=1,2,3時(shí),2n>n!;
當(dāng)n≥4,n∈N時(shí),2n<n!;
當(dāng)n→∞時(shí),$\frac{1}{{n}^{2}}$<$\frac{{2}^{n}}{n!}$<$\frac{1}{n}$,
則$\underset{lim}{n→∞}$$\frac{{2}^{n}}{n!}$=0.

點(diǎn)評(píng) 本題考查數(shù)列極限的求法,注意運(yùn)用兩邊夾法則,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.向量$\vec a=(\sqrt{3},\;1)$,$\vec b=(\sqrt{3},\;-1)$,$\vec a$與$\vec b$夾角的大小為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,$a1=2,{S_n}={a_n}({\frac{n}{3}+r})({r∈R,n∈{N^*}})$.
(1)求r的值及數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)${b_n}=\frac{n}{a_n}({n∈{N^*}})$,記{bn}的前n項(xiàng)和為Tn
①當(dāng)n∈N*時(shí),λ<T2n-Tn恒成立,求實(shí)數(shù)λ的取值范圍;
②求證:存在關(guān)于n的整式g(n),使得$\sum_{i=1}^{n-1}{({{T_n}+1})}={T_n}•g(n)-1$對(duì)一切n≥2,n∈N*都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.(1)求log${\;}_{\sqrt{3}}$9-($\frac{1}{64}$)${\;}^{\frac{2}{3}}$+8${\;}^{\frac{1}{4}}$×$\root{4}{2}$;
(2)已知tanθ=2,求$\frac{si{n}^{2}θ+1}{sinθcosθ-co{s}^{2}θ}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)F1、F2分別為雙曲線$\frac{x^2}{16}$-$\frac{y^2}{9}$=1的左右焦點(diǎn),M是雙曲線的右支上一點(diǎn),則△MF1F2的內(nèi)切圓圓心的橫坐標(biāo)為(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知a、b∈R,且2ab+2a2+2b2-9=0,若M為a2+b2的最小值,則約束條件$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}≤3M}\\{|x|+|y|≤\sqrt{2}M}\end{array}\right.$所確定的平面區(qū)域內(nèi)整點(diǎn)(橫坐標(biāo)縱坐標(biāo)均為整數(shù)的點(diǎn))的個(gè)數(shù)為( 。
A.29B.25C.18D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若不等式(ax+3)(x2-b)≤0對(duì)任意的x∈[0,+∞)恒成立,則( 。
A.ab2=9B.a2b=9,a<0C.b=9a2,a<0D.b2=9a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.平面向量$\overrightarrow{a}$=(x,1),$\overrightarrow$=(1,y),$\overrightarrow{c}$=(2,-4),如果 $\overrightarrow$∥$\overrightarrow{c}$,且$\overrightarrow{a}$⊥($\overrightarrow$-$\overrightarrow{c}$),那么實(shí)數(shù)x,y的值分別是(  )
A.2,-2B.-2,-2C.$\frac{1}{2}$,2D.$\frac{1}{2}$,$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=Asin(ωx+φ)(ω>0,-π<φ<0)的部分圖象如圖所示,則下列判斷正確的是( 。
A.函數(shù)f(x)的最小正周期為π
B.函數(shù)f(x)的值域?yàn)閇-$\frac{7}{2}$,$\frac{7}{2}$]
C.函數(shù)f(x)的圖象關(guān)于直線x=-$\frac{1}{6}$對(duì)稱
D.函數(shù)f(x)的圖象向右平移$\frac{1}{3}$個(gè)單位得到函數(shù)y=Asinωx的圖象

查看答案和解析>>

同步練習(xí)冊(cè)答案