【題目】某國際性會議紀念章的一特許專營店銷售紀念章,每枚進價為5元,同時每銷售一枚這種紀念章還需向該會議的組織委員會交特許經營管理費2元,預計這種紀念章以每枚20元的價格銷售時,該店一年可銷售2000枚,經過市場調研發(fā)現(xiàn),每枚紀念章的銷售價格在每枚20元的基礎上,每減少一元則增加銷售400枚,而每增加一元則減少銷售100枚,現(xiàn)設每枚紀念章的銷售價格為元(每枚的銷售價格應為正整數(shù)).
(1)寫出該特許專營店一年內銷售這種紀念章所獲得的利潤(元)與每枚紀念章的銷售價格的函數(shù)關系式;
(2)當每枚紀念章銷售價格為多少元時,該特許專營店一年內利潤(元)最大,并求出這個最大值;
科目:高中數(shù)學 來源: 題型:
【題目】 設函數(shù)
(1)如果,那么實數(shù)___;
(2)如果函數(shù)有且僅有兩個零點,那么實數(shù)的取值范圍是___.
【答案】或4;
【解析】
試題分析:由題意 ,解得或;
第二問如圖:
的圖象是由兩條以 為頂點的射線組成,當在A,B 之間(包括不包括)時,函數(shù)和有兩個交點,即有兩個零點.所以 的取值范圍為 .
考點:1.分段函數(shù)值;2.函數(shù)的零點.
【題型】填空題
【結束】
15
【題目】已知函數(shù)的部分圖象如圖所示.
()求函數(shù)的解析式.
()求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的定義域是的一切實數(shù),對定義域內的任意,都有且當時,.
(1)求證:是偶函數(shù);
(2)求證:在上是增函數(shù);
(3)試比較與的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在上的函數(shù),若已知其在內只取到一個最大值和一個最小值,且當時函數(shù)取得最大值為;當,函數(shù)取得最小值為.
(1)求出此函數(shù)的解析式;
(2)是否存在實數(shù),滿足不等式?若存在,求出的范圍(或值),若不存在,請說明理由;
(3)若將函數(shù)的圖像保持橫坐標不變縱坐標變?yōu)樵瓉淼?/span>得到函數(shù),再將函數(shù)的圖像向左平移個單位得到函數(shù),已知函數(shù)的最大值為,求滿足條件的的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為偶函數(shù).
(1)求實數(shù)的值,并寫出在區(qū)間上的增減性和值域(不需要證明);
(2)令,其中,若對任意、,總有,求的取值范圍;
(3)令,若對任意、,總有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某群體的人均通勤時間,是指單日內該群體中成員從居住地到工作地的平均用時,某地上班族中的成員僅以自駕或公交方式通勤,分析顯示:當中的成員自駕時,自駕群體的人均通勤時間為(單位:分鐘),而公交群體的人均通勤時間不受影響,恒為40分鐘,試根據(jù)上述分析結果回答下列問題:
(1)當在什么范圍內時,公交群體的人均通勤時間少于自駕群體的人均通勤時間?
(2)求該地上班族的人均通勤時間的表達式;并求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】口袋里裝有1紅,2白,3黃共6個形狀相同的小球,從中取出2球,事件“取出的兩球同色”,“取出的2球中至少有一個黃球”,“取出的2球至少有一個白球”,“取出的兩球不同色”,“取出的2球中至多有一個白球”.下列判斷中正確的序號為________.
①與為對立事件;②與是互斥事件;③與是對立事件:④;⑤.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“活水圍網”養(yǎng)魚技術具有養(yǎng)殖密度高、經濟效益好的特點.研究表明:“活水圍網”養(yǎng)魚時,某種魚在一定的條件下,每尾魚的平均生長速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數(shù).當時,的值為2千克/年;當時,是的一次函數(shù);當時,因缺氧等原因,的值為0千克/年.
(1)當時,求關于的函數(shù)表達式.
(2)當養(yǎng)殖密度為多少時,魚的年生長量(單位:千克/立方米)可以達到最大?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知矩形ABCD所在平面垂直于直角梯形ABPE所在平面于直線AB,且ABBP2,AD=AE=1,AE⊥AB,且AE∥BP.
(1)求平面PCD與平面ABPE所成的二面角的余弦值;
(2)線段PD上是否存在一點N,使得直線BN與平面PCD所成角的正弦值等于?若存在,試確定點N的位置;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com