【題目】設(shè)f(a)=|x2-a2|dx
(1)當(dāng)0≤a≤1與a>1時(shí),分別求f(a);
(2)當(dāng)a≥0時(shí),求f(a)的最小值.

【答案】
(1)

【解答】

當(dāng)0≤a≤1時(shí),

當(dāng)a>1時(shí),

所以


(2)

【解答】

當(dāng)a>1時(shí),由于上是增函數(shù),

故f(a)在上的最小值是,

當(dāng)時(shí),f'(a)=4a2-2a=2a(2a-1),

由f(a)>0知,或a<0,

故f(a)在上遞減 ,在上遞增,

因此在[0,1]上,f(a)的最小值為,

綜上可知,f(a)在上的最小值為.


【解析】因?yàn)閒(a)=|x2-a2|dx中帶有絕對(duì)值,在計(jì)算的過(guò)程中首先要分類(lèi)討論去掉絕對(duì)值,本題考查了分類(lèi)討論求解問(wèn)題的能力,難度較大
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解定積分的概念的相關(guān)知識(shí),掌握定積分的值是一個(gè)常數(shù),可正、可負(fù)、可為零;用定義求定積分的四個(gè)基本步驟:①分割;②近似代替;③求和;④取極限.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l: (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=2.
(1)若點(diǎn)M的直角坐標(biāo)為(2, ),直線l與曲線C交于A、B兩點(diǎn),求|MA|+|MB|的值;
(2)設(shè)曲線C經(jīng)過(guò)伸縮變換 得到曲線C′,求曲線C′的內(nèi)接矩形周長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱錐S﹣ABC中,△ABC是邊長(zhǎng)為2 的正三角形,平面SAC⊥平面ABC,SA=SC=2,M、N分別為AB、SB的中點(diǎn).

(1)證明:AC⊥SB;
(2)求三棱錐B﹣CMN的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2x+2x . (Ⅰ)試寫(xiě)出這個(gè)函數(shù)的性質(zhì)(不少于3條,不必說(shuō)明理由),并作出圖象;
(Ⅱ)設(shè)函數(shù)g(x)=4x+4x﹣af(x),求這個(gè)函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=4 ﹣x的值域?yàn)?/span>

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè) ,其中 n 為正整數(shù).
(1)求f(1),f(2),f(3) 的值;
(2)猜想滿(mǎn)足不等式 f(n)<0 的正整數(shù) n 的范圍,并用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(1)分別求函數(shù)在區(qū)間上的極值

(2)求證:對(duì)任意,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】用數(shù)學(xué)歸納法證明 ,則當(dāng)n=k+1時(shí)左端應(yīng)在n=k的基礎(chǔ)上加上( )
A.(3k+2)
B.(3k+4)
C.(3k+2)+(3k+3)
D.(3k+2)+(3k+3)+(3k+4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知復(fù)數(shù)
(1)若 z 為純虛數(shù),求實(shí)數(shù) a 的值;
(2)若 z 在復(fù)平面上對(duì)應(yīng)的點(diǎn)在直線 x+2y+1=0 上,求實(shí)數(shù) a 的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案