某射手擊中目標的概率為0.8,每次射擊的結(jié)果相互獨立,現(xiàn)射擊10次,問他最有可能射中幾次?

8

解析試題分析:設(shè)最有可能擊中n次,則
4分

               10分)
n的值為8,即他最有可能射中8次.  12分
考點:本題考查了獨立重復(fù)試驗的概率公式
點評:此類問題一般采用列不等式,解不等式的方法求得,也可通過對問題的分析和推理,使解題過程得到簡化.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙兩人各進行3次射擊,甲每次擊中目標的概率為,乙每次擊中目標的概率為
求:(1)乙至少擊中目標2次的概率;
(2)乙恰好比甲多擊中目標2次的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

口袋中有5個大小相同的小球,其中1個小球標有數(shù)字“3”,2個小球標有數(shù)字“2”,2個小球標有數(shù)字“1”,每次從中任取一個小球,取后不放回,連續(xù)抽取兩次。
(I)求兩次取出的小球所標數(shù)字不同的概率;
(II)記兩次取出的小球所標數(shù)字之和為X,求事件的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

盒內(nèi)有大小相同的9個球,其中2個紅色球,3個白色球,4個黑色球. 規(guī)定取出1個紅色球得1分,取出1個白色球得0分,取出1個黑色球得-1分 . 現(xiàn)從盒內(nèi)任取3個球
(Ⅰ)求取出的3個球中至少有一個紅球的概率;
(Ⅱ)求取出的3個球得分之和恰為1分的概率;
(Ⅲ)設(shè)為取出的3個球中白色球的個數(shù),求的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某高校在2013年考試成績中100名學(xué)生的筆試成績的頻率分布直方圖如圖所示,

(1)分別求第3,4,5組的頻率;
(2)若該校決定在筆試成績高的第3,4,5組中用分層抽樣抽取6名學(xué)生進入第二輪面試,
① 已知學(xué)生甲和學(xué)生乙的成績均在第三組,求學(xué)生甲和學(xué)生乙不同時進入第二輪面試的概率;
② 若第三組被抽中的學(xué)生實力相當,在第二輪面試中獲得優(yōu)秀的概率均為,設(shè)第三組中被抽中的學(xué)生有名獲得優(yōu)秀,求的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知男人中有5%患色盲,女人中有0.25%患色盲,從100個男人和100個女人中任選一人.
(1)求此人患色盲的概率;
(2)如果此人是色盲,求此人是男人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

哈爾濱市五一期間決定在省婦女兒中心舉行中學(xué)生“藍天綠樹、愛護環(huán)境”圍棋比賽,規(guī)定如下:
兩名選手比賽時每局勝者得1分,負者得0分,比賽進行到有一人比對方多3分或打滿7局時停止.
設(shè)某學(xué)校選手甲和選手乙比賽時,甲在每局中獲勝的概率為,且各局勝負相互獨立.已知
第三局比賽結(jié)束時比賽停止的概率為
(1)求的值;
(2)求甲贏得比賽的概率;
(3)設(shè)表示比賽停止時已比賽的局數(shù),求隨機變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

袋中裝著分別標有數(shù)字1,2,3,4,5的5個形狀相同的小球.
(1)從袋中任取2個小球,求兩個小球所標數(shù)字之和為3的倍數(shù)的概率;
(2)從袋中有放回的取出2個小球,記第一次取出的小球所標數(shù)字為x,第二次為y,求點滿足的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

現(xiàn)有甲、乙兩個靶。某射手向甲靶射擊一次,命中的概率為,命中得1分,沒有命中得0分;向乙靶射擊兩次,每次命中的概率為,每命中一次得2分,沒有命中得0分。該射手每次射擊的結(jié)果相互獨立。假設(shè)該射手完成以上三次射擊。
(Ⅰ)求該射手恰好命中一次的概率;
(Ⅱ)求該射手的總得分X的分布列及數(shù)學(xué)期望EX.

查看答案和解析>>

同步練習(xí)冊答案