設(shè)拋物線的焦點(diǎn)為,點(diǎn),線段的中點(diǎn)在拋物線上.設(shè)動直線與拋物線相切于點(diǎn),且與拋物線的準(zhǔn)線相交于點(diǎn),以為直徑的圓記為圓.
(1)求的值;
(2)試判斷圓與軸的位置關(guān)系;
(3)在坐標(biāo)平面上是否存在定點(diǎn),使得圓恒過點(diǎn)?若存在,求出的坐標(biāo);若不存在,說明理由.
(1) (2)見解析 (3)存在
【解析】
試題分析:
(1)判斷拋物線的焦點(diǎn)位置,得到焦點(diǎn)坐標(biāo),利用中點(diǎn)坐標(biāo)公式得到FA的中點(diǎn)坐標(biāo)帶入拋物線即可求的P的值.
(2)直線與拋物線相切,聯(lián)立直線與拋物線,判別式為0即可得到k,m之間的關(guān)系,可以用k來替代m,得到P點(diǎn)的坐標(biāo),拋物線準(zhǔn)線與直線的方程可得到Q點(diǎn)的坐標(biāo),利用中點(diǎn)坐標(biāo)公式可得到PQ中點(diǎn)坐標(biāo),通過討論k的取值范圍得到中點(diǎn)到x軸距離與圓半徑(PQ為直徑)的大小比較即可判斷圓與x軸的位置關(guān)系.
(3)由(2)可以得到PQ的坐標(biāo)(用k表示),根據(jù)拋物線對稱性知點(diǎn)在軸上,設(shè)點(diǎn)坐標(biāo)為,則M點(diǎn)需滿足,即向量內(nèi)積為0,即可得到M點(diǎn)的坐標(biāo),M點(diǎn)的坐標(biāo)如果為常數(shù)(不含k),即存在這樣的定點(diǎn),如若不然,則不存在.
試題解析:
解:(1)利用拋物線的定義得,故線段的中點(diǎn)的坐標(biāo)為,代入方程得,解得。 2分
(2)由(1)得拋物線的方程為,從而拋物線的準(zhǔn)線方程為 3分
由得方程,
由直線與拋物線相切,得 4分
且,從而,即, 5分
由,解得, 6分
∴的中點(diǎn)的坐標(biāo)為
圓心到軸距離,
∵
8分
∵,
∴當(dāng)時,,圓與軸相切;
當(dāng)時,,圓與軸相交; 9分
(或,以線段為直徑圓的方程為:
令得
∴當(dāng)時,,圓與軸相切;
當(dāng)時,,圓與軸相交; 9分
(3)方法一:假設(shè)平面內(nèi)存在定點(diǎn)滿足條件,由拋物線對稱性知點(diǎn)在軸上,設(shè)點(diǎn)坐標(biāo)為, 10分
由(2)知,
∴ 。
由得,
所以,即或 13分
所以平面上存在定點(diǎn),使得圓恒過點(diǎn). 14分
證法二:由(2)知,,的中點(diǎn)的坐標(biāo)為
所以圓的方程為 11分
整理得 12分
上式對任意均成立,
當(dāng)且僅當(dāng),解得 13分
所以平面上存在定點(diǎn),使得圓恒過點(diǎn). 14分
考點(diǎn):拋物線 直線與拋物線的位置關(guān)系 圓與直線的位置關(guān)系 向量內(nèi)積
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)拋物線的焦點(diǎn)為,點(diǎn)
.若線段的中點(diǎn)在拋物線上,
則到該拋物線準(zhǔn)線的距離為_____________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省韶關(guān)市高三調(diào)研測試文科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)拋物線的焦點(diǎn)為,點(diǎn),線段的中點(diǎn)在拋物線上. 設(shè)動直線與拋物線相切于點(diǎn),且與拋物線的準(zhǔn)線相交于點(diǎn),以為直徑的圓記為圓.
(1)求的值;
(2)證明:圓與軸必有公共點(diǎn);
(3)在坐標(biāo)平面上是否存在定點(diǎn),使得圓恒過點(diǎn)?若存在,求出的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆河南安陽一中分校高二第二次階段考試?yán)頂?shù)學(xué)試卷(解析版) 題型:填空題
設(shè)拋物線的焦點(diǎn)為,點(diǎn).若線段的中點(diǎn)在拋物線上,則點(diǎn)到該拋物線準(zhǔn)線的距離為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河北省保定市高三上學(xué)期期末調(diào)研考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
設(shè)拋物線的焦點(diǎn)為, 經(jīng)過點(diǎn)的直線與拋物線相交于兩點(diǎn),且點(diǎn)恰為線段的中點(diǎn),則______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年普通高等學(xué)校招生全國統(tǒng)一考試(浙江卷)理科數(shù)學(xué) 題型:填空題
設(shè)拋物線的焦點(diǎn)為,點(diǎn).若線段的中點(diǎn)在拋物線上,則到該拋物線準(zhǔn)線的距離為_____________。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com