已知“函數(shù)、數(shù)y=f(x)的圖象關于點P(a,b)成中心對稱圖形”的充要條件為“函數(shù)y=f(x+a)-b是奇函數(shù)”,現(xiàn)有以下四個函數(shù),
①y=
1-2x
x-4
 ②y=(x-2)|x-2|+
1
2
x ③y=-
8
2x+4
 ④y=log2
2x
4-x

其中具有相同對稱中心的兩個函數(shù)的序號是( 。
A、①和③B、①和④
C、②和③D、②和④
考點:函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應用
分析:根據(jù)函數(shù)成中心對稱的等價條件進行判斷即可.
解答: 解:①若y=
1-2x
x-4
=
-2(x-4)-7
x-4
=-2-
7
x-4
,則y=f(x+4)-(-2)=-
1
x
為奇函數(shù),則函數(shù)關于(4,-2)對稱,故①滿足條件.排除C,D.
 ④設g(x)=log2
2x
4-x
的對稱中心為點P(a,b),
則函數(shù)f(x)=g(x+a)-b=log2
2(x+a)
4-(x+a)
-b是奇函數(shù),
由函數(shù)的定義域,即不等式
2(x+a)
4-(x+a)
>0的解集關于原點對稱,可得a=2,
此時f(x)=log2
2(x+2)
2-x
-b,x∈(-2,2)
由f(-x)+f(x)=log2
2(-x+2)
2+x
+log2
2(x+2)
2-x
-2b=2-2b=0得:b=1
故函數(shù)g(x)=log2
2x
2-x
的對稱中心為點(2,1),
故④滿足條件,
故選:B.
點評:本題主要考查函數(shù)對稱性的判斷,根據(jù)條件利用平移關系證明函數(shù)是奇偶性是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

橢圓
x2
k
+
y2
4
=1的離心率為
1
2
,則實數(shù)k的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在如圖所示的空間直角坐標系O-xyz中,一個四面體的頂點坐標分別是(0,0,2),(2,2,0),(2,1,1),(2,2,2).給出編號為①,②,③,④的四個圖,則該四面體的側(cè)視圖和俯視圖分別為(  )
A、①和②B、①和③
C、③和②D、④和②

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個正方體挖去一個圓錐得到一個幾何體,其正視圖與俯視圖如圖所示,則該幾何體的側(cè)(左)視圖是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示的多邊形是邊長為1的正方形ABCD及以B為圓心,r=1為半徑的四分之一圓BOC構(gòu)成,點P從O點開始沿O→C→D→A運動,設∠OBP=x,記△OBP的面積為f(x),那么函數(shù)f(x)的圖象是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知p:a∈{a|對任意x∈R,不等式x2+ax+a>0恒成立},q:a∈{a|方程x2+ay2=a表示的是焦點在x軸上的橢圓},如果命題“p且q”為假命題,命題“p或q”為真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知丨
z+1
z
丨=1,求丨z丨范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設△ABC三條邊的邊長分別為a,b,c,對應的角分別為A,B,C
(1)設2b=a+c,且角B的取值集合為M,當x∈M時,求f(x)=sin(4x-
π
6
)的值域;
(2)設角B的平分線交邊AC于D,且角B取(1)中的最大值(不含2b=a+c),
AD
=2
DC
,BD=4
3
,求其三邊a,b,c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合A為函數(shù)y=ln(-x2-2x+8)的定義域,集合B為函數(shù)y=x+
1
x+2
(x>-2)的值域,集合C為不等式(ax-1)(x-2)≤0的解集,(1)求A∩B;(2)若C⊆CRA,求a的取值范圍.

查看答案和解析>>

同步練習冊答案