分析:(I)求出數(shù)列的前兩項,通過an-2n=Sn-1,求出an+1,an的關系,轉化為數(shù)列{bn}相鄰兩項的關系,即可證明數(shù)列{bn}是等差數(shù)列;
(II)通過(I),求出數(shù)列{bn},{an}的通項公式,確定數(shù)列{Sn}的通項公式,利用錯位相減法求出數(shù)列{Sn}前n項和Tn.
解答:解:(I)由題意知得,a
1=2,a
2-2
2=S
1=a
1=2,∴a
2=6.
n≥2時,a
n-2
n=S
n-1,a
n+1-2
n+1=S
n,
兩式相減得 a
n+1-a
n-2
n=a
n即 a
n+1=2a
n+2
n (n≥2)
于是
=+即 b
n+1-b
n=
n≥2
又b
1=
=1,
b2==
,b
2-b
1=
,
所以數(shù)列{b
n}是首項為1,公差為0.5的等差數(shù)列.
(II)由(I)知,
bn=1+(n-1)×=,
a
n=b
n2
n=(n+1)2
n-1,
又n≥2時a
n-2
n=S
n-1,S
n-1=(n-1)2
n-1,
∴S
n=n•2
n∴T
n=1×2
1+2×2
2+3×2
3+…+n×2
n,…①
2T
n=1×2
2+2×2
3+3×2
4+…+n×2
n+1…②
②-①可得
T
n=2
n+1-2-n×2
n=(n-1)2
n+1+2.
點評:本題是中檔題,考查遞推關系式求解數(shù)列的通項公式,判斷數(shù)列是等差數(shù)列,數(shù)列前n項和的求法,錯位相減法的應用,?碱}型.