分析 由并集性質(zhì)得a2=a或a2=1,由此利用集合中元素的性質(zhì)能求出實(shí)數(shù)a的值.
解答 解:∵兩個(gè)集合{1,a},{a2}滿足{1,a}∪{a2}={1,a},
∴a2=a或a2=1,
由a2=a,得a=0或a=1,
由a2=1,得a=1或a=-1,
當(dāng)a=-1時(shí),{1,a}∪{a2}={1,-1}∪{1}={1,-1},成立;
當(dāng)a=0時(shí),{1,a}∪{a2}={1,0}∪{0}={1,0},成立;
當(dāng)a=1時(shí),{1,a}={1,1},不成立.
∴實(shí)數(shù)a的值為-1或0.
故答案為:-1或0.
點(diǎn)評 本題考查實(shí)數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意并集及性質(zhì)的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({-\frac{1}{3},+∞})$ | B. | $({-\frac{1}{3},0})∪({0,+∞})$ | C. | $[{-\frac{1}{3},+∞})$ | D. | [0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<b<c | B. | a<c<b | C. | b<a<c | D. | b<c<a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a2<b2 | B. | $\sqrt{-a}<\sqrt$ | C. | $\frac{1}{a}<\frac{1}$ | D. | $\frac{a}$+$\frac{a}$≥2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 2 | C. | 6 | D. | 不確定 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com