18.已知cos(π+α)•$cos(\frac{π}{2}+α)$=$\frac{60}{169}$,且$\frac{π}{4}$<α<$\frac{π}{2}$,求sin α與cos α的值.

分析 由已知利用誘導(dǎo)公式可求2sin α•cos α=$\frac{120}{169}$,結(jié)合同角三角函數(shù)基本關(guān)系式可求:(sin α+cos α)2=$\frac{289}{169}$,(sin α-cos α)2=$\frac{49}{169}$,結(jié)合α的范圍可求sin α+cos α>0,sin α-cos α>0,可求sin α+cos α=$\frac{17}{13}$,sin α-cos α=$\frac{7}{13}$,聯(lián)立即可得解.

解答 解:cos(π+α)=-cos α,$cos(\frac{π}{2}+α)$=-sin α.
∴sin α•cos α=$\frac{60}{169}$,即2sin α•cos α=$\frac{120}{169}$.①
又∵sin2α+cos2α=1,②
①+②得(sin α+cos α)2=$\frac{289}{169}$,
②-①得(sin α-cos α)2=$\frac{49}{169}$,
又∵$\frac{π}{4}$<α<$\frac{π}{2}$,
∴sin α>cos α>0,
即sin α+cos α>0,sin α-cos α>0,
∴sin α+cos α=$\frac{17}{13}$,③
sin α-cos α=$\frac{7}{13}$,④
③+④得sin α=$\frac{12}{13}$,③-④得cos α=$\frac{5}{13}$.

點(diǎn)評(píng) 本題主要考查了誘導(dǎo)公式,同角三角函數(shù)基本關(guān)系式,三角函數(shù)的圖象和性質(zhì)在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.下列命題中正確的是(  )
A.若?服從正態(tài)分布N(1,2),且P(?>2)=0.1,則P(0<?<2)=0.2
B.命題:“?x>1,x2>1”的否定是“?x≤1,x2≤1”
C.直線ax+y+2=0與ax-y+4=0垂直的充要條件為a=±1
D.“若xy=0,則x=0或y=0”的逆否命題為“若x≠0或y≠0,則xy≠0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.$\sqrt{si{n}^{2}480°}$等于( 。
A.±$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知三角形的三個(gè)頂點(diǎn)A(-5,0),B(3,-3),C(0,2),求AB邊所在直線的方程及該邊上高線所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.(1)若$log_a^{\;}\frac{3}{4}$<1(a>1),求實(shí)數(shù)a的取值范圍;
(2)已知a=log32,那么log38-2log36用a表示.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知向量$\overrightarrow{a}$=(cosθ,sinθ),θ∈(0,π),$\overrightarrow$=(1,$\sqrt{3}$),若$\overrightarrow{a}$與$\overrightarrow$共線,則sin2θ=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知3sinα+4cosα=5.
(1)求tanα的值;
(2)求$cot(\frac{3π}{2}-α)•{sin^2}(\frac{3π}{2}+α)$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=6-12x+x3,
(Ⅰ)求在點(diǎn)P(1,f(1))處的切線方程;
(Ⅱ)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若輸入的數(shù)字是“68”,則下列程序運(yùn)行后輸出的結(jié)果是86

查看答案和解析>>

同步練習(xí)冊(cè)答案