如圖,ABCD-A1B1C1D1是正方體,在圖(1)中E、F分別是D1C1、B1B的中點,畫出圖(1)(2)中有陰影的平面與平面ABCD的交線,并給出證明.

答案:
解析:

  

  思路分析:在圖(1)中過點E作EN平行于BB1交CD于點N,連結NB并延長交EF的延長線于點M,連結AM,則AM即為有陰影的平面與平面ABCD的交線.

  在圖(2)中,延長DC,過點C1作C1M∥A1B交DC的延長線于點M,連結BM,則BM即為有陰影的平面與平面ABCD的交線.


提示:

作截面時,要注意截面的完整性,應畫出截面圖與所給幾何體各個面的交線.確定兩個平面的交線,就是找兩個平面的兩個公共點,一般題目都會給出一個公共點,在確定另一個公共點時通常利用分別在已知的兩個平面內的兩條直線的交點來確定.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,ABCD-A1B1C1D1是棱長為6的正方體,E、F分別是棱AB、BC上的動點,且AE=BF.
(1)求證:A1F⊥C1E;
(2)當A1、E、F、C1共面時,求:
①D1到直線C1E的距離;
②面A1DE與面C1DF所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,ABCD-A1B1C1D1為正方體,下面結論中正確的是
①②④
①②④
.(把你認為正確的結論都填上)
①BD∥平面CB1D1;
②AC1⊥平面CB1D1;
③AC1與底面ABCD所成角的正切值是
2
;
④二面角C-B1D1-C1的正切值是
2

⑤過點A1與異面直線AD與CB1成70°角的直線有2條.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,ABCD-A1B1C1D1為正方體,下面結論中正確的結論是
①②
①②
.(把你認為正確的結論都填上)
①BD∥平面CB1D1;
②AC1⊥平面CB1D1;
③過點A1與異面直線AD和CB1成90°角的直線有2條.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,長方體ABCD—A1B1C1D1中,點O是B1D1的中點,直線A1C交平面AB1D1于點M,對下列結論,錯誤的是(    )

A.A、M、O三點共線                      B.A、M、O、A1四點共面

C.A、O、C、M四點共面                 D.B、B1、O、M四點共面

查看答案和解析>>

科目:高中數(shù)學 來源:2011年廣東省江門市高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

如圖,ABCD-A1B1C1D1是棱長為6的正方體,E、F分別是棱AB、BC上的動點,且AE=BF.
(1)求證:A1F⊥C1E;
(2)當A1、E、F、C1共面時,求:
①D1到直線C1E的距離;
②面A1DE與面C1DF所成二面角的余弦值.

查看答案和解析>>

同步練習冊答案