如圖,在棱長為1的正方體AC1中,E、F分別為A1D1和A1B1的中點.
(Ⅰ)求平面BDD1與平面BFC1所成的銳二面角的余弦值;
(Ⅱ)若點P在正方形ABCD內(nèi)部或其邊界上,且EP∥平面BFC1,求EP的最大值、最小值.
分析:(1)確定平面BDD1的一個法向量、平面BFC1的法向量,利用向量的夾角公式,即可求平面BDD1與平面BFC1所成的銳二面角的余弦值;
(Ⅱ)設(shè)P(x,y,0)(0≤x≤1,0≤y≤1),確定y的范圍,表示出EP,即可求EP的最大值、最小值.
解答:解:(I)平面BDD1的一個法向量為
MA
=(
1
2
,-
1
2
,0)

設(shè)平面BFC1的法向量為
n
=(x,y,z)
n
BF
=-
1
2
y+z=0
n
BC
=(x,y,z)•(-1,0,1)=-x+z=0

x=z
y=2z

取z=1得平面BFC1的一個法向量
n
=(1,2,1)

cos<
MA
n
>=
MA
n
|
MA
||
n
|
=
1
2
-1
2
2
6
=-
3
6

∴所求的余弦值為
3
6
…(5分)
(II)設(shè)P(x,y,0)(0≤x≤1,0≤y≤1),
EP
=(x-
1
2
,y,-1)

EP
n
=0
(x-
1
2
)+2y-1=0

x=-2y+
3
2
,
∵0≤x≤1,∴0≤-2y+
3
2
≤1
,∴
1
4
≤y≤
3
4

|
EP
|=
(x-
1
2
)
2
+y2+1
=
(2y-1)2+y2+1
=
5y2-4y+2
=
5(y-
2
5
)
2
+
6
5

1
4
≤y≤
3
4
,∴當(dāng)y=
2
5
時,∴|
EP
|min=
30
5
,當(dāng)y=
3
4
時,∴|
EP
|max=
29
4
…(10分)
點評:本題考查向量知識的運用,考查面面角,考查學(xué)生分析解決問題的能力,考查學(xué)生的計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在棱長都相等的正三棱柱ABC-A1B1C1中,D,E分別為AA1,B1C的中點.
(1)求證:DE∥平面ABC;
(2)求證:B1C⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,一棱長為2的正四面體O-ABC的頂點O在平面α內(nèi),底面ABC平行于平面α,平面OBC與平面α的交線為l.
(1)當(dāng)平面OBC繞l順時針旋轉(zhuǎn)與平面α第一次重合時,求平面OBC轉(zhuǎn)過角的正弦
值.
(2)在上述旋轉(zhuǎn)過程中,△OBC在平面α上的投影為等腰△OB1C1(如圖1),B1C1的中點為O1.當(dāng)AO⊥平面α?xí)r,問在線段OA上是否存在一點P,使O1P⊥OBC?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在棱長都相等的正三棱柱ABC-A1B1C1中,D,E分別為AA1,B1C的中點.
(1)求證:DE∥平面ABC;
(2)求證:B1C⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年江蘇省南京市金陵中學(xué)高三(上)8月月考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在棱長都相等的正三棱柱ABC-A1B1C1中,D,E分別為AA1,B1C的中點.
(1)求證:DE∥平面ABC;
(2)求證:B1C⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年安徽省合肥八中高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

如圖,一棱長為2的正四面體O-ABC的頂點O在平面α內(nèi),底面ABC平行于平面α,平面OBC與平面α的交線為l.
(1)當(dāng)平面OBC繞l順時針旋轉(zhuǎn)與平面α第一次重合時,求平面OBC轉(zhuǎn)過角的正弦
值.
(2)在上述旋轉(zhuǎn)過程中,△OBC在平面α上的投影為等腰△OB1C1(如圖1),B1C1的中點為O1.當(dāng)AO⊥平面α?xí)r,問在線段OA上是否存在一點P,使O1P⊥OBC?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案