(2006•宣武區(qū)一模)△ABC中,若tanB•tanC=5,則
cosA
cos(B-C)
的值為
2
3
2
3
分析:由tanB•tanC=5,得sinBsinC=5cosBcosC,
cosA
cos(B-C)
=
-cos(B+C)
cos(B-C)
,利用和差角的余弦公式展開,代入上述式子可求.
解答:解:由tanB•tanC=5,得
sinBsinC
cosBcosC
=5
,即sinBsinC=5cosBcosC,
所以
cosA
cos(B-C)
=
-cos(B+C)
cos(B-C)

=
sinBsinC-cosBcosC
cosBcosC+sinBsinC

=
5cosBcosC-cosBcosC
cosBcosC+5cosBcosC

=
2
3
,
故答案為:
2
3
點評:本題考查三角函數(shù)的恒等變換、兩角和與差的余弦函數(shù),考查學生的運算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2006•宣武區(qū)一模)若把一個函數(shù)的圖象按
a
=(-
π
3
,-2)平移后得到函數(shù)y=cosx的圖象,則原圖象的函數(shù)解析式為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•宣武區(qū)一模)已知|
p
|=2
2
,|
q
|=3,
p
,
q
夾角為
π
4
,則以
a
=5
p
+2
q
,
b
=
p
-3
q
為鄰邊的平行四邊形的一條對角線長為
(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•宣武區(qū)一模)設全集U={1,3,5,7},集合M={1,a-5},M?U,?UM={5,7},則a的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•宣武區(qū)一模)若指數(shù)函數(shù)y=f(x)的反函數(shù)的圖象經(jīng)過點(2,-1),則此指數(shù)函數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•宣武區(qū)一模)二項式(
1
x
-x
x
)n
的展開式中含x4的項,則n的一個可能值是( 。

查看答案和解析>>

同步練習冊答案