精英家教網 > 高中數學 > 題目詳情
若函數f(x)=ln(x2+ax+1)是偶函數,則實數a的值為   
【答案】分析:由題意函數是偶函數,由偶函數的定義可以得到ln(x2+ax+1)=ln(x2-ax+1),進而得到ax=-ax在函數的定義域中總成立,即可判斷出a的取值得到答案
解答:解:函數f(x)=ln(x2+ax+1)是偶函數
∴f(x)=f(-x),即ln(x2+ax+1)=ln(x2-ax+1)
∴ax=-ax在函數的定義域中總成立
∴a=0
故答案為0
點評:本題考查對數的性質及函數偶函數的性質,解題的關鍵是理解ax=-ax在函數的定義域中總成立,由此判斷出參數的取值
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

若函數f(x)=ln(x2-2ax+3)的值域為R,則實數a的取值范圍為
a≥
3
或a≤-
3
a≥
3
或a≤-
3

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•廣州一模)若函數f(x)=ln(x2+ax+1)是偶函數,則實數a的值為
0
0

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•江西模擬)已知函數f(x)=ln(x+1)+mx,當x=0時,函數f(x)取得極大值.
(1)求實數m的值;
(2)已知結論:若函數f(x)=ln(x+1)+mx在區(qū)間(a,b)內導數都存在,且a>-1,則存在x0∈(a,b),使得f′(x0)=
f(b)-f(a)
b-a
.試用這個結論證明:若-1<x1<x2,函數g(x)=
f(x1)-f(x2)
x1-x2
(x-x1)+f(x1)
,則對任意x∈(x1,x2),都有f(x)>g(x);
(3)已知正數λ1,λ2,…,λn,滿足λ12+…+λn=1,求證:當n≥2,n∈N時,對任意大于-1,且互不相等的實數x1,x2,…,xn,都有f(λ1x12x2+…+λnxn)>λ1f(x1)+λ2f(x2)+…+λnf(xn).

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數f(x)=ln(2x+a)與g(x)=bex+1的圖象關于直線y=x對稱,則a+2b=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數f(x)=ln(x+
a
x
-4)的值域為R,則實數a的取值范圍是(  )
A、(-∞,4]
B、[0,4]
C、(-∞,4)
D、(0,4)

查看答案和解析>>

同步練習冊答案