求證:tan(x+)+tan(x-)=2tan2x

答案:
解析:

左邊==2tan2x=右邊


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

先解答(1),再通過類比解答(2):
(1)①求證:tan(x+
π
4
)=
1+tanx
1-tanx
;②用反證法證明:函數(shù)f(x)=tanx的最小正周期是π;
(2)設(shè)x∈R,a為正常數(shù),且f(x+a)=
1+f(x)
1-f(x)
,試問:f(x)是周期函數(shù)嗎?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

先解答(Ⅰ),再通過結(jié)構(gòu)類比解答(Ⅱ):
(Ⅰ)求證:tan(x+
π
4
)=
1+tanx
1-tanx
;
(Ⅱ) 設(shè)x∈R且f(x+π)=
1+f(x)
1-f(x)
,試問:f(x)是周期函數(shù)嗎?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:設(shè)計(jì)選修數(shù)學(xué)-1-2蘇教版 蘇教版 題型:044

先解答(1),再通過結(jié)構(gòu)類比解答(2):(1)求證:tan(x+)=;

(2)設(shè)x∈R,a≠0,f(x)是非函數(shù),且函數(shù)f(x+a)=,試問f(x)是周期函數(shù)嗎?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

先解答(1),再通過類比解答(2):
(1)①求證:tan(x+
π
4
)=
1+tanx
1-tanx
;②用反證法證明:函數(shù)f(x)=tanx的最小正周期是π;
(2)設(shè)x∈R,a為正常數(shù),且f(x+a)=
1+f(x)
1-f(x)
,試問:f(x)是周期函數(shù)嗎?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

先解答(Ⅰ),再通過結(jié)構(gòu)類比解答(Ⅱ):
(Ⅰ)求證:tan(x+
π
4
)=
1+tanx
1-tanx
;
(Ⅱ) 設(shè)x∈R且f(x+π)=
1+f(x)
1-f(x)
,試問:f(x)是周期函數(shù)嗎?證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案