(Ⅰ)a1,a2,a3,a4;
(Ⅱ)an與an+1(n≥2)的關(guān)系式;
(Ⅲ)數(shù)列{an}的通項(xiàng)公式an,并證明an≥2n(n∈N*).
解:(Ⅰ)當(dāng)n=1時(shí),不同的染色方法種數(shù)a1=3,
當(dāng)n=2時(shí),不同的染色方法種數(shù)a2=3×2=6,
當(dāng)n=3時(shí),不同的染色方法種數(shù)a3=3×2×1=6,
當(dāng)n=4時(shí),分扇形區(qū)域1和3同色與否兩種情況,
∴不同的染色方法種數(shù)a4=3×1×2×2+3×2×1×1=18;
(Ⅱ)依次對(duì)扇形區(qū)域1,2,…,n,n+1染色,不同的染色方法種數(shù)為3×2n,其中扇形區(qū)域1與n+1不同色的有an+1種,扇形區(qū)域1與n+1同色的有an種,
∴an+an+1=3×2n(n≥2).
(Ⅲ)∵an+an+1=3×2n(n≥2)
∴a2+a3=3×22
a3+a4=3×23
…
an-1+an=3×2n-1
將上述n-2個(gè)等式兩邊分別乘(-1)k (k=2,3,…,n-1)再相加,得
a2+(-1)n-1an=3×22-3×23+…+3×(-1)n-1×2n-1
∴a2+(-1)n-1an=3×
an=2n+2·(-1)n
從而an=
證明:當(dāng)n=1時(shí),a1=3>2×1
當(dāng)n=2時(shí),a2=6>2×1
當(dāng)n≥3時(shí),an=2n+2·(-1)n=(1+1)n+2·(-1)n
=1+n+…+n+1+2·(-1)n
≥2n+2+2·(-1)n≥2n
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖南長(zhǎng)沙重點(diǎn)中學(xué)高三上學(xué)期第三次月考理科數(shù)學(xué)試卷(解析版) 題型:填空題
如圖,將圓分成n個(gè)區(qū)域,用3種不同顏色給每一個(gè)區(qū)域染色,要求相鄰區(qū)域顏色互異,把不同的染色方法種數(shù)記為an.
(1) ;
(2) .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com