如圖,在四棱錐中,底面是正方形,側(cè)面底面,若、分別為、的中點.
(Ⅰ) 求證://平面;
(Ⅱ) 求證:平面平面;
科目:高中數(shù)學 來源: 題型:解答題
如圖,在長方體ABCD-A1B1C1D1中,AB=2,AD=1,A1A=1,證明直線BC1平行于平面DA1C,并求直線BC1到平面D1AC的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD, AB//CD,∠DAB=90°,PA=AD=DC=1,AB=2,M為PB的中點.
(I)證明:MC//平面PAD;
(II)求直線MC與平面PAC所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在正方體ABCD—A1B1C1D1中,E、F分別為棱BB1和DD1的中點.
(1)求證:平面B1FC//平面ADE;
(2)試在棱DC上取一點M,使平面ADE;
(3)設(shè)正方體的棱長為1,求四面體A1—FEA的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖是一個直三棱柱(以A1B1C1為底面)被一平面
所截得到的幾何體,截面為ABC.已知A1B1=B1C1=l,∠AlBlC1=90°,
AAl=4,BBl=2,CCl=3,且設(shè)點O是AB的中點。
(1)證明:OC∥平面A1B1C1;
(2)求異面直線OC與AlBl所成角的正切值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在斜三棱柱ABC—A1B1C1中,AB⊥側(cè)面BB1C1C,BC=2,BB1=4,AB=,∠BCC1=60°.
(Ⅰ)求證:C1B⊥平面A1B1C1;
(Ⅱ)求A1B與平面ABC所成角的正切值;
(Ⅲ)若E為CC1中點,求二面角A—EB1—A1的正切值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在圖一所示的平面圖形中,是邊長為 的等邊三角形,是分別以為底的全等的等腰三角形,現(xiàn)將該平面圖形分別沿折疊,使所在平面都與平面垂直,連接,得到圖二所示的幾何體,據(jù)此幾何體解決下面問題.
(1)求證:;
(2)當時,求三棱錐的體積;
(3)在(2)的前提下,求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com