【題目】如圖:已知四棱錐PABCD的底面ABCD是平行四邊形,PA面ABCD,M是AD的中點,N是PC的中點.

(1)求證:MN面PAB;

(2)若平面PMC面PAD,求證:CMAD.

【答案】(1)詳見解析(2)詳見解析

【解析】

試題分析:(1)取BC中點E,連結(jié)ME、NE,由已知推導(dǎo)出平面PAB平面MNE,由此能證明MN平面PAB.

2)利用面面垂直的性質(zhì),由平面PMC平面PAD,平面ABCD平面PAD,可證CM平面PAD,由AD平面PAD,即可證明CMAD

試題解析:(1)取PB的中點E,連接EA,EN,

PBC中,EN//BC且

,AD//BC,AD=BC

所以EN//AM,,EN=AM.

所以四邊形ENMA是平行四邊形,

所以MN//AE. ,

所以MN//平面PAB.

(2)過點A作PM的垂線,垂足為H,

因為平面PMC平面PAD,平面PMC平面PAD=PM,AHPM,

所以AH平面PMC,又

所以AHCM.

因為PA平面ABCD,所以PACM.

因為PAAH=A,

所以CM平面PAD.

所以CMAD.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若某校研究性學(xué)習(xí)小組共6人,計劃同時參觀科普展,該科普展共有甲,乙,丙三個展廳,6人各自隨機地確定參觀順序,在每個展廳參觀一小時后去其他展廳,所有展廳參觀結(jié)束后集合返回,設(shè)事件A為:在參觀的第一小時時間內(nèi),甲,乙,丙三個展廳恰好分別有該小組的2個人;事件B為:在參觀的第二個小時時間內(nèi),該小組在甲展廳人數(shù)恰好為2人,則 ).

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=x2+2xtanθ-1,x∈[-1,],其中θ∈(-,).

(1)當θ=-時,求函數(shù)f(x)的最大值;

(2)求θ的取值范圍,使yf(x)在區(qū)間[-1,]上是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若,不等式有且只有兩個整數(shù)解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,由A,B兩個元件分別組成串聯(lián)電路(圖(1))和并聯(lián)電路(圖(2)),觀察兩個元件正;蚴У那闆r.

1)寫出試驗的樣本空間;

2)對串聯(lián)電路,寫出事件M=“電路是通路”包含的樣本點;

3)對并聯(lián)電路,寫出事件N=“電路是斷路”包含的樣本點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中超足球隊的后衛(wèi)線上一共有7名球員,其中3人只能打中后衛(wèi),2人只能打邊后衛(wèi),2人既能打中后衛(wèi)又能打邊后衛(wèi),主教練決定選派4名后衛(wèi)上場比賽,假設(shè)可以隨機選派球員.

(1)在選派的4人中至少有2人能打邊后衛(wèi)的概率;

(2)在選派的4人中既能打中后衛(wèi)又能打邊后衛(wèi)的人數(shù)的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)aR).

1)討論yfx)的單調(diào)性;

2)若函數(shù)fx)有兩個不同零點x1,x2,求實數(shù)a的范圍并證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圖甲中的兩條曲線分別表示某理想狀態(tài)下捕食者和被捕食者數(shù)量隨時間的變化規(guī)律、對捕食者和被捕食者數(shù)量之間的關(guān)系描述錯誤的是( )

A. 捕食者和被捕食者數(shù)量與時間以年為周期

B. 由圖可知,當捕食者數(shù)量增多的過程中,被捕食者數(shù)量先增多后減少

C. 捕食者和被捕食者數(shù)量之間的關(guān)系可以用圖1乙描述

D. 捕食者的數(shù)量在第年和年之間數(shù)量在急速減少

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】狄利克雷函數(shù)是高等數(shù)學(xué)中的一個典型函數(shù),若則稱為狄利克雷函數(shù).對于狄利克雷函數(shù),給出下面4個命題:①對任意,都有;②對任意,都有;③對任意,都有, ;④對任意,都有.其中所有真命題的序號是

A. ①④ B. ②③ C. ①②③ D. ①③④

查看答案和解析>>

同步練習(xí)冊答案