分析 由數(shù)列an=$\left\{{\;}\right.\begin{array}{l}{3,n=1}\\{{2^{n-1}},n≥2}\end{array}$,當n=1時,S1=a1=3.S2=5,S3=9=32.當n≥4時,Cn=3+2+4+…+2n-1=2n+1,C1=3,所以對正整數(shù)n都有Cn=2n+1.由tp=2n+1,tp-1=2n,(t,p∈N*且t>1,p>1),t只能是不小于3的奇數(shù).對p分類討論即可得出.
解答 解:由數(shù)列an=$\left\{{\;}\right.\begin{array}{l}{3,n=1}\\{{2^{n-1}},n≥2}\end{array}$,當n=1時,S1=a1=3.
S2=3+2=5,S3=3+2+22=9=32.
當n≥4時,Cn=3+2+4+…+2n-1=2n+1,C1=3,
所以對正整數(shù)n都有Cn=2n+1.
由tp=2n+1,tp-1=2n,(t,p∈N*且t>1,p>1),t只能是不小于3的奇數(shù).
①當p為偶數(shù)時,tp-1=$({t}^{\frac{p}{2}}+1)({t}^{\frac{p}{2}}-1)$=2n,
因為tp+1和tp-1都是大于1的正整數(shù),
所以存在正整數(shù)g,h,使得tp+1=2g,${t}^{\frac{p}{2}}$-1=2h,2g-2h=2,2h(2g-h-1)=2,
所以2h=2且2g-h-1=1⇒h=1,g=2,相應的n=3,即有C3=32,C3為“指數(shù)型和”;
②當p為奇數(shù)時,tp-1=(t-1)(1+t+t2+…+tp-1),
由于1+t+t2+…+tp-1是p個奇數(shù)之和,仍為奇數(shù),又t-1為正偶數(shù),
所以(t-1)(1+t+t2+…+tp-1)=2n不成立,此時沒有“指數(shù)型和”.
綜上可得:只有n=3時,滿足條件.
故答案為:3.
點評 本題考查了新定義“指數(shù)型和”、等比數(shù)列的求和公式,考查了分類討論方法、推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分非必要條件 | B. | 必要非充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 有兩個內(nèi)角是鈍角 | B. | 有三個內(nèi)角是鈍角 | ||
C. | 至少有兩個內(nèi)角是鈍角 | D. | 沒有一個內(nèi)角是鈍角 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ②③ | B. | ② | C. | ①②③ | D. | ④ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2 | C. | 2$\sqrt{2}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com