已知雙曲線的焦點(diǎn)到漸近線的距離等于右焦點(diǎn)到右頂點(diǎn)的距離的2倍,則雙曲線的離心率e的值為(  )
A、
2
B、
5
3
C、
3
D、2
分析:寫出頂點(diǎn)坐標(biāo),焦點(diǎn)坐標(biāo)及漸近線方程;利用點(diǎn)到直線的距離公式求出焦點(diǎn)到漸近線的距離;列出方程求出a,b,c的關(guān)系;求出離心率.
解答:解:設(shè)雙曲線方程為
x2
a2
-
y2
b2
=1
,
則右焦點(diǎn)為(c,0),右頂點(diǎn)為(a,0),漸近線方程為y=±
b
a
x
即bx±ay=0,
據(jù)題意得
bc
a2+b2
=2(c-a)
,
即3c2-8ac+5a2=0,
解得e=
c
a
=
5
3
,
故選B.
點(diǎn)評(píng):本題考查雙曲線的焦點(diǎn)坐標(biāo)、漸近線方程;考查雙曲線中三參數(shù)的關(guān)系、考查點(diǎn)到直線的距離公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年湖南六校聯(lián)考文) 已知雙曲線的焦點(diǎn)到漸近線的距離等于右焦點(diǎn)到右頂點(diǎn)距離的2倍,則此雙曲線的離心率的值為(  )

      A.                           B. 2                             C.                         D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年黑龍江省哈爾濱六中高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:選擇題

已知雙曲線的焦點(diǎn)到漸近線的距離為,且雙曲線右支上一點(diǎn)P到右焦點(diǎn)的距離的最小值為2,則雙曲線的離心率為( )
A.
B.3
C.2
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆黑龍江省高二上學(xué)期期末理科數(shù)學(xué)試卷 題型:選擇題

已知雙曲線的焦點(diǎn)到漸近線的距離為,且雙曲線右支上一點(diǎn)到右焦點(diǎn)的距離的最小值為2,則雙曲線的離心率為(  )

A、        B、3           C、2         D、

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:黑龍江省哈爾濱市2010屆高三一模數(shù)學(xué)(理)試題 題型:選擇題

已知雙曲線的焦點(diǎn)到漸近線的距離為,且雙曲線右支上一點(diǎn)到右焦點(diǎn)的距離的最小值為2,則雙曲線的離心率為(   )

(A)         (B)3           (C)2         (D)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案