1.已知函數(shù)f(x)=x-$\frac{1}{x}$.
(1)利用定義證明:函數(shù)f(x)在區(qū)間(0,+∞)上為增函數(shù);
(2)當(dāng)x∈(0,1)時(shí),t•f(2x)≥2x-1恒成立,求實(shí)數(shù)t的取值范圍.

分析 (1)任取0<x1<x2,利用定義作差后化簡為f(x1)-f(x2),再討論乘積的符號,即可證明:函數(shù)f(x)在區(qū)間(0,+∞)上為增函數(shù);
(2)當(dāng)x∈(0,1]時(shí),t•f(2x)≥2x-1恒成立?t≥$\frac{2x}{2x+1}$恒成立,構(gòu)造函數(shù)g(x)=$\frac{2x}{2x+1}$,利用其單調(diào)性可求得g(x)的最大值為g(1),從而可求得實(shí)數(shù)t的取值范圍.

解答 (1)證明:任取x1、x2∈(0,+∞),且x1<x2,
則f(x1)-f(x2)=(x1-$\frac{1}{{x}_{1}}$)-(x2-$\frac{1}{{x}_{2}}$)=$\frac{{(x}_{1}{-x}_{2})(1{{+x}_{1}x}_{2})}{{{x}_{1}x}_{2}}$,
∵0<x1<x2,∴1+x1x2>0,x1x2>0,x1-x2<0,
∴$\frac{{(x}_{1}{-x}_{2})(1{{+x}_{1}x}_{2})}{{{x}_{1}x}_{2}}$<0,
即f(x1)-f(x2)<0,
∴f(x1)<f(x2),
∴函數(shù)f(x)在區(qū)間(0,+∞)上為增函數(shù);
(2)∵t(2x-$\frac{1}{{2}^{x}}$)≥2x-1,
∴$\frac{t{(2}^{x}-1){(2}^{x}+1)}{{2}^{x}}$≥2x-1
∵x∈(0,1],∴1<2x≤2,
∴t≥$\frac{{2}^{x}}{{2}^{x}+1}$恒成立,設(shè)g(x)=$\frac{{2}^{x}}{{2}^{x}+1}$=1-$\frac{1}{{2}^{x}+1}$,
顯然g(x)在 (0,1]上為增函數(shù),
g(x)的最大值為g(1)=$\frac{2}{3}$,故t的取值范圍是[$\frac{2}{3}$,+∞).

點(diǎn)評 本題考查函數(shù)恒成立問題,考查函數(shù)單調(diào)性的判斷與證明,突出考查等價(jià)轉(zhuǎn)化思想與構(gòu)造函數(shù)思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.從某市統(tǒng)考的學(xué)生數(shù)學(xué)考試卷中隨機(jī)抽查100份數(shù)學(xué)試卷作為樣本,分別統(tǒng)計(jì)出這些試卷總分,由總分得到如下的頻率分布直方圖.
(1)求這100份數(shù)學(xué)試卷的樣本平均分$\overline x$和樣本方差s2
(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表)
(2)從總分在[55,65)和[135,145)的試卷中隨機(jī)抽取2分試卷,求抽取的2分試卷中至少有一份總分少于65分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}的首項(xiàng)為1,Sn為數(shù)列{an}的前n項(xiàng)和,Sn=qSn-1+1,其中q>0,n>1,n∈N*
(1)若2a2,a3,a2+2 成等差數(shù)列,求{an}的通項(xiàng)公式;
(2)設(shè)雙曲線x2-$\frac{{y}^{2}}{{a}_{n}^{2}}$=1 的離心率為en,且e2=3,求e${\;}_{1}^{2}$+e${\;}_{2}^{2}$+…+e${\;}_{n}^{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)$f(x)=\frac{{-{3^x}+a}}{{{3^{x+1}}+b}}$.
(1)當(dāng)a=b=1時(shí),求滿足f(x)=3x的x的取值;
(2)若函數(shù)f(x)是定義在R上的奇函數(shù)存在t∈R,不等式f(t2-2t)<f(2t2-k)有解,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.f(x)在R上為奇函數(shù),且當(dāng)x>0時(shí)f(x)=x-1,則當(dāng)x<0時(shí)f(x)=x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.計(jì)算:
(1)${({-\frac{7}{8}})^0}+\root{4}{{{{({3-π})}^4}}}$;
(2)(log32+log92)•(log43+log83)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.A={x|2x2-7x+3≤0},B={x||x|<a}
(1)當(dāng)a=2時(shí),求A∩B,A∪B;
(2)若(∁RA)∩B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知等差數(shù)列{an}中,a2=3,a4=7,若bn=a2n
(1)求bn;
(2)求$\{\frac{1}{{{a_n}{a_{n+1}}}}\}$的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)y=x(3-2x)($0<x<\frac{3}{2}$)的最大值是(  )
A.$\frac{9}{8}$B.$\frac{9}{4}$C.$\frac{3}{2}$D.$\frac{3}{8}$

查看答案和解析>>

同步練習(xí)冊答案