【題目】已知公差不為零的等差數(shù)列滿足,且成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.
【答案】(1) ;(2) .
【解析】試題分析:(1)設(shè)等差數(shù)列的公差為,由成等比數(shù)列,可得,化簡(jiǎn)得,又,所以,從而.;(2)結(jié)合(1)可得,利用錯(cuò)位相減法結(jié)合等比數(shù)列的求和公式求解即可.
試題解析:(1)設(shè)等差數(shù)列的公差為,因?yàn)?/span>成等比數(shù)列,
所以,即,
化簡(jiǎn)得,
又,所以,從而.
(2)因?yàn)?/span>,
所以,
所以,
以上兩個(gè)等式相減得,
化簡(jiǎn)得.
【 方法點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)、等比數(shù)列的求和公式以及錯(cuò)位相減法求數(shù)列的前 項(xiàng)和,屬于中檔題.一般地,如果數(shù)列是等差數(shù)列,是等比數(shù)列,求數(shù)列的前項(xiàng)和時(shí),可采用“錯(cuò)位相減法”求和,一般是和式兩邊同乘以等比數(shù)列的公比,然后作差求解, 在寫出“”與“” 的表達(dá)式時(shí)應(yīng)特別注意將兩式“錯(cuò)項(xiàng)對(duì)齊”以便下一步準(zhǔn)確寫出“”的表達(dá)式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們可以把看作每天的"進(jìn)步”率都是1%,一年后是;而把看作每天的“落后”率都是1%,一年后是.利用計(jì)算工具計(jì)算并回答下列問(wèn)題:
(1)一年后“進(jìn)步”的是“落后”的多少倍?
(2)大約經(jīng)過(guò)多少天后“進(jìn)步”的分別是“落后”的10倍、100倍、1000倍?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(Ⅰ)設(shè) ,,若 是的必要不充分條件,求實(shí)數(shù)的取值范圍
(Ⅱ)已知命題方程表示焦點(diǎn)在軸上的橢圓;命題:雙曲線的離心率.若 有且只有一個(gè)為真命題,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司有一批專業(yè)技術(shù)人員,對(duì)他們進(jìn)行年齡狀況和接受教育程度(學(xué)歷)的調(diào)查,其結(jié)果(人數(shù)分布)如表:
(1)用分層抽樣的方法在歲年齡段的專業(yè)技術(shù)人員中抽取一個(gè)容量為的樣本,將該樣本看成一個(gè)總體,從中任取人,求至少有人的學(xué)歷為研究生的概率;
(2)在這個(gè)公司的專業(yè)技術(shù)人員中按年齡狀況用分層抽樣的方法抽取個(gè)人,其中歲以下人,歲以上人,再?gòu)倪@個(gè)人中隨機(jī)抽取出人,此人的年齡為歲以上的概率為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高校在2012年的自主招生考試成績(jī)中隨機(jī)抽取名中學(xué)生的筆試成績(jī),按成績(jī)分組,得到的頻率分布表如表所示.
組號(hào) | 分組 | 頻數(shù) | 頻率 |
第1組 | 5 | ||
第2組 | ① | ||
第3組 | 30 | ② | |
第4組 | 20 | ||
第5組 | 10 |
(1)請(qǐng)先求出頻率分布表中位置的相應(yīng)數(shù)據(jù),再完成頻率分布直方圖;
(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績(jī)高的第組中用分層抽樣抽取名學(xué)生進(jìn)入第二輪面試,求第3、4、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試;
(3)在(2)的前提下,學(xué)校決定在名學(xué)生中隨機(jī)抽取名學(xué)生接受考官進(jìn)行面試,求:第組至少有一名學(xué)生被考官面試的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為,離心率為,過(guò)的直線與橢圓交于兩點(diǎn),且的周長(zhǎng)為8.
(1)求橢圓的方程;
(2)直線過(guò)點(diǎn),且與橢圓交于兩點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】五一勞動(dòng)節(jié)放假,某商場(chǎng)進(jìn)行一次大型抽獎(jiǎng)活動(dòng).在一個(gè)抽獎(jiǎng)盒中放有紅、橙、黃、綠、藍(lán)、紫的小球各2個(gè),分別對(duì)應(yīng)1分、2分、3分、4分、5分、6分.從袋中任取3個(gè)小球,按3個(gè)小球中最大得分的8倍計(jì)分,計(jì)分在20分到35分之間即為中獎(jiǎng).每個(gè)小球被取出的可能性都相等,用表示取出的3個(gè)小球中最大得分,求:
(1)取出的3個(gè)小球顏色互不相同的概率;
(2)隨機(jī)變量的概率分布和數(shù)學(xué)期望;
(3)求某人抽獎(jiǎng)一次,中獎(jiǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(且),
(1)若,且函數(shù)的值域?yàn)?/span>,求的解析式;
(2)在(1)的條件下,當(dāng)時(shí),時(shí)單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(3)當(dāng),時(shí),若對(duì)于任意,不等式恒成立,求實(shí)數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】交強(qiáng)險(xiǎn)是車主必須為機(jī)動(dòng)車購(gòu)買的險(xiǎn)種,若普通座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,保費(fèi)與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如下表(其中浮動(dòng)比率是在基準(zhǔn)保費(fèi)上上下浮動(dòng)):
交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表 | ||
浮動(dòng)因素 | 浮動(dòng)比率 | |
上一個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮 | |
上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮 | |
上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故 | 下浮 | |
上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故 | ||
上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故 | 上浮 | |
上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故 | 上浮 |
某機(jī)構(gòu)為了研究某一品牌普通座以下私家車的投保情況,隨機(jī)抽取了輛車齡已滿三年的該品牌同型號(hào)私家車的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:
類型 | ||||||
數(shù)量 |
(Ⅰ)求這輛車普通座以下私家車在第四年續(xù)保時(shí)保費(fèi)的平均值(精確到元)
(Ⅱ)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基準(zhǔn)保費(fèi)的車輛記為事故車.假設(shè)購(gòu)進(jìn)一輛事故車虧損元,一輛非事故車盈利元,且各種投保類型車的頻率與上述機(jī)構(gòu)調(diào)查的頻率一致.試完成下列問(wèn)題:
①若該銷售商店內(nèi)有六輛(車齡已滿三年)該品牌二手車,某顧客欲在該店內(nèi)隨機(jī)挑選輛車,求這輛車恰好有一輛為事故車的概率;
②若該銷售商一次購(gòu)進(jìn)輛車(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com