已知函數(shù)f(x)=cosx+sinx+4的值域?yàn)镸,在M中取三個(gè)不相等的數(shù)y1、y2、y3,使之構(gòu)成公比為q的等比數(shù)列,則公比q的取值范圍為 ( )
A.
B.
C.
D.
【答案】分析:利用三角函數(shù)的和角公式將f(x)化為f(x)=cosx+sinx+4=,求出其值域M,設(shè)出等比數(shù)列的三項(xiàng),列出不等式求出公比的范圍,
解答:解:f(x)=cosx+sinx+4=
所以M=[2,6],
所以2≤y1≤6
2≤y1q2≤6
解得
故選C.
點(diǎn)評(píng):解決三角函數(shù)的性質(zhì)問題,一個(gè)先利用三角函數(shù)的公式化簡三角函數(shù)為一個(gè)角一個(gè)函數(shù)的形式,然后再求性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
|x+
1
x
|,x≠0
0     x=0
,則關(guān)于x的方程f2(x)+bf(x)+c=0有5個(gè)不同實(shí)數(shù)解的充要條件是(  )
A、b<-2且c>0
B、b>-2且c<0
C、b<-2且c=0
D、b≥-2且c=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sinxcosx-cos2x-
1
2
,x∈R.
(1)求函數(shù)f(x)的最小值和最小正周期;
(2)已知△ABC內(nèi)角A、B、C的對(duì)邊分別為a、b、c,滿足sinB-2sinA=0且c=3,f(C)=0,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-
1
4
x+
3
4x
-1,g(x)=x2-2bx+4,若對(duì)任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),則實(shí)數(shù)b的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的圖象如圖所示,則函數(shù)的值域?yàn)椋ā 。?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+bx+c(a,b,c∈R)滿足f(0)≥2,f(1)≥2,方程f(x)=0在區(qū)間(0,1)上有兩個(gè)實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍為
(4,+∞)
(4,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案