4.拋物線x2=2py(p>0)的準(zhǔn)線方程為y=-3,則p=6.

分析 拋物線x2=2py(p>0)準(zhǔn)線方程為y=-$\frac{p}{2}$,$\frac{p}{2}$=3,則p=6.

解答 解:由題意可知拋物線x2=2py(p>0)焦點(diǎn)在y軸正半軸上,準(zhǔn)線方程為y=-$\frac{p}{2}$,
∴$\frac{p}{2}$=3,則p=6,
故答案為:6.

點(diǎn)評(píng) 本題考查拋物線的簡(jiǎn)單幾何性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.△ABC中,c=$\sqrt{3}$,b=1,∠B=30°,則△ABC的面積等于( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{4}$C.$\frac{\sqrt{3}}{2}$或$\sqrt{3}$D.$\frac{\sqrt{3}}{2}$或$\frac{\sqrt{3}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(3,1),則向量$\overrightarrow{a}$與$\overrightarrow$的夾角為45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)f(x)=x(a-e-x),曲線y=f(x)上存在不同的兩點(diǎn),使得曲線在這兩點(diǎn)處的切線都與y軸垂直,則實(shí)數(shù)a的取值范圍是( 。
A.(-e2,+∞)B.(-e2,0)C.(-e-2,+∞)D.(-e-2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1(a>0)的一個(gè)焦點(diǎn)坐標(biāo)為(2$\sqrt{3}$,0)則實(shí)數(shù)a的值為( 。
A.8B.2$\sqrt{2}$C.16D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知橢圓C:$\frac{{x}^{2}}{2}$+y2=1.
(Ⅰ)求橢圓C的長(zhǎng)軸和短軸的長(zhǎng),離心率e,左焦點(diǎn)F1
(Ⅱ)經(jīng)過(guò)橢圓C的左焦點(diǎn)F1作直線l,直線l與橢圓C相交于A,B兩點(diǎn),若|AB|=$\frac{8\sqrt{2}}{7}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-y+1≤0}\\{x>0}\\{y≤2}\end{array}\right.$,則$\frac{2y}{2x+1}$的取值范圍是(  )
A.[$\frac{4}{3}$,4]B.[$\frac{4}{3}$,4)C.[2,4]D.(2,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)一切正整數(shù)n,點(diǎn)Pn(n,Sn)都在函數(shù)f(x)=x2+2x的圖象上,且過(guò)點(diǎn)Pn(n,Sn)的切線的斜率為kn
(I)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=$\frac{1}{{a}_{n}•({k}_{n}+1)}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)集合A={x|x<0},B={x|x2-x≥0},則A∩B=( 。
A.(0,1)B.(-∞,0)C.[1,+∞)D.[0,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案