已知n≥2且n∈N*,對n2進行如下方式的“分拆”:22→(1,3),32→(1,3,5),42→(1,3,5,7),…,那么361的“分拆”所得的數(shù)的中位數(shù)是

[  ]

A.19

B.21

C.29

D.361

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江省寧波市八校2011-2012學(xué)年高二下學(xué)期期末聯(lián)考數(shù)學(xué)文科試題 題型:013

已知n≥2且n∪N*,對n2進行如下方式的“分拆”:22→(1,3),32→(1,3,5),42→(1,3,5,7),…,那么361的“分拆”所得的數(shù)的中位數(shù)是

[  ]

A.19

B.21

C.29

D.361

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知a<b,且a2-a-6=0,b2-b-6=0,數(shù)列{an}、{bn}滿足a1=1,a2=-6a,an+1=6an-9an-1(n≥2,n∈N*),bn=an+1-ban(n∈N*).
(1)求證數(shù)列{bn}是等比數(shù)列;
(2)已知數(shù)列{cn}滿足cn=數(shù)學(xué)公式(n∈N*),試建立數(shù)列{cn}的遞推公式(要求不含an或bn);
(3)若數(shù)列{an}的前n項和為Sn,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年上海市黃浦區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

已知a<b,且a2-a-6=0,b2-b-6=0,數(shù)列{an}、{bn}滿足a1=1,a2=-6a,an+1=6an-9an-1(n≥2,n∈N*),bn=an+1-ban(n∈N*).
(1)求證數(shù)列{bn}是等比數(shù)列;
(2)已知數(shù)列{cn}滿足cn=(n∈N*),試建立數(shù)列{cn}的遞推公式(要求不含an或bn);
(3)若數(shù)列{an}的前n項和為Sn,求Sn

查看答案和解析>>

同步練習(xí)冊答案