分析:(1)求出f(x)的導(dǎo)函數(shù),令導(dǎo)函數(shù)大于0求出x的范圍,令導(dǎo)函數(shù)小于0求出x的范圍,列出x,f′(x),f(x)的變化情況表,由表得到函數(shù)的最值.
(2)求出f(x)的導(dǎo)函數(shù),通過(guò)判斷導(dǎo)函數(shù)等于0根的情況,對(duì)參數(shù)a進(jìn)行分類討論,求出函數(shù)的單調(diào)區(qū)間,進(jìn)一步求出函數(shù)的極值.
解答:解:(1)f′(x)=-
.
令f′(x)>0,得-3<x<-1,
令f′(x)<0,得x<-3,-1<x<0,x>0.
列出x,f′(x),f(x)的變化情況表
x |
-4 |
(-4,-3) |
-3 |
(-3,-1) |
-1 |
(-1,-) |
- |
f′(x) |
|
- |
0 |
+ |
0 |
- |
|
f(x) |
- |
? |
極小值 - |
|
極大值0 |
|
-2 |
∴最大值為0,最小值為-2.
(2)g′(x)=-
;
設(shè)u=x
2+4x+3a.
△=16-12a,
①當(dāng)a≥
時(shí),△≤0,g′(x)≤0,所以y=g(x)沒有極值點(diǎn)
②當(dāng)0<a<
時(shí),x
1=-2-
,x
2=-2+
<0.
減區(qū)間:(-∞,x
1),(x
2,0),(0,+∞),增區(qū)間:(x
1,x
2).
∴有兩個(gè)極值點(diǎn)x
1,x
2.
③當(dāng)a=0時(shí),g(x)=
+
,g′(x)=-
.
減區(qū)間:(-∞,-4),(0,+∞),增區(qū)間:(-4,0).
∴有一個(gè)極值點(diǎn)x=-4.
綜上所述:a=0時(shí),有一個(gè)極值點(diǎn)x=-4;
0<a<
時(shí)有兩個(gè)極值點(diǎn)x=-2±
;
a≥
時(shí)沒有極值點(diǎn).
點(diǎn)評(píng):求函數(shù)在閉區(qū)間上的最值,一般利用導(dǎo)數(shù)求出函數(shù)的極值,再求出閉區(qū)間的兩個(gè)端點(diǎn)值,從中選出最值;求函數(shù)的極值,一般令導(dǎo)函數(shù)等于0求出根,再判斷根左右兩邊的導(dǎo)函數(shù)符號(hào)是否異號(hào).