(2009•虹口區(qū)一模)已知:f(x)=ax+b(a,b∈R),f1(x)=f(x),fn+1(x)=f[fn(x)](n∈N*),若f5(x)=32x-93,則a+b=
-1
-1
分析:根據(jù)題意分別推出f2(x),f3(x),f4(x)及f5(x)的解析式,又f5(x)=32x-93,根據(jù)兩多項(xiàng)式相等時,系數(shù)對應(yīng)相等,即可列出關(guān)于a與b的方程,求出方程的解即可得到a與b的值,進(jìn)而求出a+b的值.
解答:解:由f1(x)=f(x)=ax+b,得到f2(x)=f(f1(x))=a(ax+b)+b=a2x+ab+b,
f3(x)=f(f2(x))=a[a(ax+b)+b]+b=a3x+a2b+ab+b,
同理f4(x)=f(f3(x))=a4x+a3b+a2b+ab+b,
則f5(x)=f(f4(x))=a5x+a4b+a3b+a2b+ab+b=32x-93,
即a5=32①,a4b+a3b+a2b+ab+b=-93②,
由①解得:a=2,把a(bǔ)=2代入②解得:b=-3,
則a+b=2-3=-1.
故答案為:-1
點(diǎn)評:本題主要考查學(xué)生會根據(jù)一系列等式推出一般性的規(guī)律,掌握兩多項(xiàng)式相等時滿足的條件,是一道中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009•虹口區(qū)一模)偶函數(shù)f(x)在[0,+∞)上單調(diào)遞增,則滿足不等式f(2x-1)≤f(3)的x取值范圍是
{x|-1≤x≤2}
{x|-1≤x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•虹口區(qū)一模)已知:命題p:1≤x≤3;命題q:x+
4x
-m≤0
,當(dāng)p是q的充分條件時,實(shí)數(shù)m的取值范圍是
[5,+∞)
[5,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•虹口區(qū)一模)在△ABC中,a=5,sinC=3sinA,則邊c=
15
15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•虹口區(qū)一模)定義在R上的函數(shù)f(x)滿足f(x)f(x+5)=3,若f(1)=2,則f(16)=
3
2
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•虹口區(qū)一模)等差數(shù)列{an}的前m項(xiàng)和為Sm,已知:an-1+an+1-3an2=0,S2n-1=18,則n=
14
14

查看答案和解析>>

同步練習(xí)冊答案