已知sina+sinb=
2
2
,求cosa+cosb的取值范圍.
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用
專題:三角函數(shù)的圖像與性質(zhì)
分析:令所求表達(dá)式為t,通過平方關(guān)系式,利用同角三角函數(shù)的基本關(guān)系式以及兩角和與差的三角函數(shù)化簡函數(shù)的表達(dá)式為一個角的一個三角函數(shù)的形式,通過三角函數(shù)的有界性求出t的范圍即可.
解答: 解:設(shè)cosa+cosb=t
sina+sinb=
2
2
,(sina+sinb)2=
1
2

∴sin2a+2sinbsina+sin2b=
1
2
,…①
∵cosa+cosb=t,∴(cosa+cosb)2=t2 ,
即cos2a+2cosbcosa+cos2b=t2…②,
①+②可得:2+2(cosacosb+sinasinb)=
1
2
+t2
即2cos(a-b)=t2-
3
2
,
∴cos(a-b)=
2t2-3
4
,
∵cos(a-b)∈[-1,1]
-1≤
2t2-3
4
≤1
,
-4≤2t2-3≤4
∴-1≤2t2≤7
解得:0≤t2
7
2

即:-
14
2
≤t≤
14
2

cosa+cosb的取值范圍:[-
14
2
,
14
2
]
點(diǎn)評:本題考查兩角和與差的三角函數(shù),同角三角函數(shù)的基本關(guān)系式,三角函數(shù)的化簡求值,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=xlnx.
(Ⅰ)求函數(shù)f(x)的最小值;
(Ⅱ)設(shè)x1,x2>0,p1,p2>0,且p1+p2=1,證明:p1f(x1)+p2f(x2)≥f(p1x1+p1x1);
(Ⅲ)設(shè)x1,x2,…,xn>0,p1,p2,…,pn>0,且p1+p2+…+pn=1,如果p1x1+p2x2+…+pnxn≥e,證明:p1f(x1)+p2f(x2)+…+pnf(xn)≥e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(sinx,
3
sinx),
n
=(sinx,-cosx)
,設(shè)函數(shù)f(x)=
m
n
,若函數(shù)g(x)的圖象與f(x)的圖象關(guān)于坐標(biāo)原點(diǎn)對稱.
(Ⅰ)求函數(shù)g(x)在區(qū)間[-
π
4
,
π
6
]
上的最大值,并求出此時x的取值;
(Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對邊,若f(
A
2
-
π
12
)+g(
π
12
+
A
2
)=-
3
,b+c=7,bc=8,求邊a的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:y=kx+1,⊙C:(x-1)2+(y+1)2=12
(1)判斷直線l與⊙C的公共點(diǎn)個數(shù);
(2)求直線l被⊙C截得的最短弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐V-ABC中,∠VAB=∠VAC=∠ABC=90°,VA=
3
AC,點(diǎn)E為VC的中點(diǎn).
(Ⅰ)求證:平面VBA⊥平面VBC;
(Ⅱ)求直線BE與平面ABC所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

焦點(diǎn)在x軸上的雙曲線C的一條漸近線L的方程為x+2y=0,若定點(diǎn)A(3,0)到雙曲線C上的動點(diǎn)P的最小距離為1,求雙曲線C的方程及P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x-2|
(1)解不等式xf(x)+3>0;
(2)對于任意的x∈(-3,3),不等式f(x)<m-|x|恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+bx+c(a>0,b∈R,c∈R)
(Ⅰ)若函數(shù)f(x)最小值是f(-1)=0,且c=1,F(x)=
f(x),x>0
-f(x),x<0
,求F(3)+F(-4)的值
(Ⅱ)若a=1,c=0,且|f(x)|≤1在區(qū)間(0,2]上恒成立,試求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(x+
1
2
x
)n
的展開式中前三項的系數(shù)成等差數(shù)列,則n=
 

查看答案和解析>>

同步練習(xí)冊答案