(本小題滿分l2分)已知函數(shù)∈R.

(I)討論函數(shù)的單調(diào)性;

(Ⅱ)當(dāng)時,恒成立,求的取值范圍.

 

【答案】

(Ⅰ)當(dāng)時,上單調(diào)遞增;當(dāng)時, 上單調(diào)遞增,在單調(diào)遞減.

(Ⅱ)。

【解析】

試題分析:(Ⅰ)的定義域為,

上單調(diào)遞增,……………2分

則由,當(dāng)時,當(dāng)

時,上單調(diào)遞增,在單調(diào)遞減.

所以當(dāng)時,上單調(diào)遞增,

當(dāng)時, 上單調(diào)遞增,在單調(diào)遞減.……………4分

(Ⅱ),

,令,

,………………6分

,

,

.……………8分

(2),

以下論證.……………10分

,

,

,

綜上所述,的取值范圍是………………12分

考點:本題主要考查了導(dǎo)數(shù)的運算和導(dǎo)數(shù)在函數(shù)單調(diào)性中的應(yīng)用。

點評:較難題,利用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間的方法,解題時注意函數(shù)的定義域,避免出錯。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三下學(xué)期模擬沖刺考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分l2分)已知數(shù)列{an}中,a1=1,a2=3且2an+1=an+2+an(n∈N*).?dāng)?shù)列{bn}的前n項和為Sn,其中b1=-,bn+1=-Sn(n∈N*).

(1)求數(shù)列{an}和{bn}的通項公式;

(2)若Tn+…+,求Tn的表達(dá)式

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三下學(xué)期模擬沖刺考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分l2分)已知橢圓的的右頂點為A,離心率,過左焦點作直線與橢圓交于點P,Q,直線AP,AQ分別與直線交于點

(Ⅰ)求橢圓的方程;

(Ⅱ)證明以線段為直徑的圓經(jīng)過焦點

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年貴州省高三年級第五次月考文科數(shù)學(xué) 題型:解答題

(本小題滿分l2分)(注意:在試題卷上作答無效)

求經(jīng)過A(2,-1),和直線x+y=1相切,且圓心在直線y=-2x上的圓的方程

(I)求出圓的標(biāo)準(zhǔn)方程

(II)求出(I)中的圓與直線3x+4y=0相交的弦長AB

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省高三上學(xué)期10月月考理科數(shù)學(xué)卷 題型:解答題

(本小題滿分l2分)設(shè)命題:函數(shù))的值域是;命題:指數(shù)函數(shù)上是減函數(shù).若命題“”是假命題,求實數(shù)的范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆山西省高二第二學(xué)期3月月考理科數(shù)學(xué)試卷 題型:解答題

(本小題滿分l2分)求垂直于直線并且與曲線相切的直線方程.

 

查看答案和解析>>

同步練習(xí)冊答案