已知橢圓經(jīng)過(guò)點(diǎn)(0,1),過(guò)右焦點(diǎn)F且不與x軸重合的動(dòng)直線(xiàn)L交橢圓于A(yíng),C兩點(diǎn),當(dāng)動(dòng)直線(xiàn)L的斜率為2時(shí),坐標(biāo)原點(diǎn)O到L的距離為
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)F的另一直線(xiàn)交橢圓于B,D兩點(diǎn),且AC⊥BD,當(dāng)四邊形ABCD的面積S=時(shí),求直線(xiàn)L的方程.
【答案】分析:(1)先設(shè)F(c,0)表示出直線(xiàn)L的方程,再由點(diǎn)到直線(xiàn)的距離求出c的值,將點(diǎn)(0,1)代入橢圓可求出b的值,最后根據(jù)a2=b2+c2得a的值,進(jìn)而可得到橢圓方程.
(2)先設(shè)直線(xiàn)L的方程為y=k(x-1)、點(diǎn)A(x1,y1)、C(x2,y2),然后聯(lián)立直線(xiàn)與橢圓方程消去y得到關(guān)于x的一元二次方程,進(jìn)而得到x1+x2、x1x2的表達(dá)式,代入|AC|得到關(guān)于k的表達(dá)式,再由AC⊥BD表示出直線(xiàn)BD,同理可得到|BD|的表達(dá)式,最后根據(jù)=可求出k的值,確定直線(xiàn)L的方程.
解答:解:(Ⅰ)設(shè)F(c,0),則直線(xiàn)L的方程為2x-y-2c=0,
∵坐標(biāo)原點(diǎn)O到L的距離為
,c=1.
∵橢圓經(jīng)過(guò)點(diǎn)(0,1),
,b=1,由a2=b2+c2得a2=2.
∴橢圓的方程為
(Ⅱ)由(Ⅰ)知,直線(xiàn)L過(guò)點(diǎn)F(1,0),設(shè)其方程為y=k(x-1)(k≠0),點(diǎn)A(x1,y1),C(x2,y2),
得,(2k2+1)x2-4k2x+2k2-2=0.
,
=(*)
∵過(guò)F的另一直線(xiàn)交橢圓于B,D兩點(diǎn),且AC⊥BD,k≠0,
∴直線(xiàn)BD的方程為y=(x-1).
把(*)式中k換成,類(lèi)比可得,
∴四邊形ABCD的面積=
解得k=±1,∴直線(xiàn)L的方程為x-y-1=0或x+y-1=0.
點(diǎn)評(píng):本題主要考查橢圓的基本性質(zhì)和直線(xiàn)與橢圓的綜合題.直線(xiàn)與圓錐曲線(xiàn)的綜合題是高考的重點(diǎn)考查對(duì)象,要著重復(fù)習(xí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013屆湖北武漢部分重點(diǎn)中學(xué)(五校)高二下期中文科數(shù)學(xué)卷(解析版) 題型:解答題

(14分)已知橢圓經(jīng)過(guò)點(diǎn)(0,1),離心率。

(1)求橢圓C的方程;

(2)設(shè)直線(xiàn)與橢圓C交于A(yíng)、B兩點(diǎn),點(diǎn)A關(guān)于x軸的對(duì)稱(chēng)點(diǎn)為。

①試建立 的面積關(guān)于m的函數(shù)關(guān)系;

②某校高二(1)班數(shù)學(xué)興趣小組通過(guò)試驗(yàn)操作初步推斷;“當(dāng)m變化時(shí),直線(xiàn)與x軸交于一個(gè)定點(diǎn)”。你認(rèn)為此推斷是否正確?若正確,請(qǐng)寫(xiě)出定點(diǎn)坐標(biāo),并證明你的結(jié)論;若不正確,請(qǐng)說(shuō)明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年黑龍江省高三上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷 題型:解答題

已知橢圓經(jīng)過(guò)點(diǎn)(0,),離心率為,直線(xiàn)l經(jīng)過(guò)橢圓C的右焦點(diǎn)F交橢圓于A、B兩點(diǎn),點(diǎn)A、FB在直線(xiàn)x=4上的射影依次為點(diǎn)D、K、E.

(Ⅰ)求橢圓C的方程;

(Ⅱ)若直線(xiàn)ly軸于點(diǎn)M,且,當(dāng)直線(xiàn)l的傾斜角變化時(shí),探求 的值是否為定值?若是,求出的值,否則,說(shuō)明理由;

(Ⅲ)連接AEBD,試探索當(dāng)直線(xiàn)l的傾斜角變化時(shí),直線(xiàn)AEBD是否相交于定點(diǎn)?若是,請(qǐng)求出定點(diǎn)的坐標(biāo),并給予證明;否則,說(shuō)明理由.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省高三上學(xué)期期中考試數(shù)學(xué)文卷 題型:解答題

(本小題滿(mǎn)分15分)已知橢圓經(jīng)過(guò)點(diǎn)(0,1),離心率

(I)求橢圓C的方程;

(II)設(shè)直線(xiàn)與橢圓C交于A(yíng),B兩點(diǎn),點(diǎn)A關(guān)于x軸的對(duì)稱(chēng)點(diǎn)為A’.試問(wèn):當(dāng)m變化時(shí)直線(xiàn)與x軸是否交于一個(gè)定點(diǎn)?若是,請(qǐng)寫(xiě)出定點(diǎn)坐標(biāo),并證明你的結(jié)論;若不是,請(qǐng)說(shuō)明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿(mǎn)分13分)已知橢圓經(jīng)過(guò)點(diǎn)(0,),離心率為,直線(xiàn)l經(jīng)過(guò)橢圓C的右焦點(diǎn)F交橢圓于A、B兩點(diǎn),點(diǎn)A、FB在直線(xiàn)x=4上的射影依次為點(diǎn)D、K、E.

(Ⅰ)求橢圓C的方程;

(Ⅱ)若直線(xiàn)ly軸于點(diǎn)M,且,當(dāng)直線(xiàn)l的傾斜角變化時(shí),探求 的值是否為定值?若是,求出的值,否則,說(shuō)明理由;

(Ⅲ)連接AE、BD,試探索當(dāng)直線(xiàn)l的傾斜角變化時(shí),直線(xiàn)AEBD是否相交于定點(diǎn)?若是,請(qǐng)求出定點(diǎn)的坐標(biāo),并給予證明;否則,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿(mǎn)分14分)

已知橢圓經(jīng)過(guò)點(diǎn)(0,),離心率為,經(jīng)過(guò)橢圓C的右焦點(diǎn)F的直線(xiàn)l交橢圓于A(yíng)、B兩點(diǎn),點(diǎn)A、F、B在直線(xiàn)x=4上的射影依次為點(diǎn)D、K、E.

(1)求橢圓C的方程;

(2)若直線(xiàn)l交y軸于點(diǎn)M,且,當(dāng)直線(xiàn)l的傾斜角變化時(shí),探求的值是否為定值?若是,求出的值,否則,說(shuō)明理由;

(3)連接AE、BD,試探索當(dāng)直線(xiàn)l的傾斜角變化時(shí),直線(xiàn)AE與BD是否相交于定點(diǎn)?若是,請(qǐng)求出定點(diǎn)的坐標(biāo),并給予證明;否則,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案