已知f(xn)=lnx,則f(2)的值為(  )

A.ln2                                  B.ln2

C.ln2                                 D.2ln2

 [答案] B

[解析] 令txn,則xt,f(t)=lntlnt,則f(2)=ln2.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:廣東省執(zhí)信中學2012屆高三下學期第三次模擬數(shù)學理科試題 題型:044

已知函數(shù)f(x)=ln(x+1)+mx,當x=0時,函數(shù)f(x)取得極大值.

(Ⅰ)求實數(shù)m的值;

(Ⅱ)已知結論∶若函數(shù)f(x)=ln(x+1)+mx在區(qū)間(a,b)內(nèi)導數(shù)都存在,且a>-1,則存在x0∈(a,b),使得.試用這個結論證明∶若-1<x1<x2,函數(shù),則對任意x∈(x1,x2),都有f(x)>g(x);

(Ⅲ)已知正數(shù)λ1,λ2,…λn,滿足λ1+λ2+…+λn=1,求證∶當n≥2,n∈N時,對任意大于-1,且互不相等的實數(shù)x1,x2,…,xn,都有f(λ1x1+λ2x2+…+λnxn)>λ1f(x1)+λ2f(x2)+…+λnf(xn).

查看答案和解析>>

同步練習冊答案