已知拋物線y2=2px(p≠0)及定點(diǎn)A(a,b),B(-a,0),ab≠0,b2≠2pa,M是拋物線上的點(diǎn).設(shè)直線AM、BM與拋物線的另一個(gè)交點(diǎn)分別為M1、M2,當(dāng)M變動(dòng)時(shí),直線M1M2恒過一個(gè)定點(diǎn),此定點(diǎn)坐標(biāo)為________.
設(shè)M,M1,M2,
由點(diǎn)A、M、M1共線可知
得y1,同理由點(diǎn)B、M、M2共線得y2.
設(shè)(x,y)是直線M1M2上的點(diǎn),則,
即y1y2=y(tǒng)(y1+y2)-2px,又y1,y2,
則(2px-by)+2pb·(a-x)y0+2pa·(by-2pa)=0.
當(dāng)x=a,y=時(shí)上式恒成立,即定點(diǎn)為.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線C的頂點(diǎn)在原點(diǎn),開口向右,過焦點(diǎn)且垂直于拋物線對(duì)稱軸的弦長為2,過C上一點(diǎn)A作兩條互相垂直的直線交拋物線于P,Q兩點(diǎn).

(1)若直線PQ過定點(diǎn),求點(diǎn)A的坐標(biāo);
(2)對(duì)于第(1)問的點(diǎn)A,三角形APQ能否為等腰直角三角形?若能,試確定三角形APD的個(gè)數(shù);若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn)P是拋物線上的動(dòng)點(diǎn),點(diǎn)P在y軸上的射影是M,點(diǎn)A 的坐標(biāo)是(4,a),則當(dāng)時(shí),的最小值是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過拋物線的焦點(diǎn)F作直線AB,CD與拋物線交于A、B、C、D四點(diǎn),且,則的最大等于 (    )
A.-4
B.-16
C.4
D.-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求滿足下列條件的拋物線的標(biāo)準(zhǔn)方程,并求對(duì)應(yīng)拋物線的準(zhǔn)線方程.
(1)過點(diǎn)(-3,2);
(2)焦點(diǎn)在直線x-2y-4=0上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線y2=2px的準(zhǔn)線方程為x=-2,該拋物線上的每個(gè)點(diǎn)到準(zhǔn)線x=-2的距離都與到定點(diǎn)N的距離相等,圓N是以N為圓心,同時(shí)與直線l1:y=x和l2:y=-x相切的圓,
(1)求定點(diǎn)N的坐標(biāo);
(2)是否存在一條直線l同時(shí)滿足下列條件:
①l分別與直線l1和l2交于A、B兩點(diǎn),且AB中點(diǎn)為E(4,1);
②l被圓N截得的弦長為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線,過原點(diǎn)的動(dòng)直線交拋物線、兩點(diǎn),的中點(diǎn),設(shè)動(dòng)點(diǎn),則的最大值是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知P,Q為拋物線x2=2y上兩點(diǎn),點(diǎn)P,Q的橫坐標(biāo)分別為4,-2,過P,Q分別作拋物線的切線,兩切線交于點(diǎn)A,則點(diǎn)A的縱坐標(biāo)為(  )
A.1B.3C.-4D.-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在平面直角坐標(biāo)系中,拋物線上縱坐標(biāo)為的點(diǎn)到焦點(diǎn)的距離
,則焦點(diǎn)到準(zhǔn)線的距離為(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案