已知F1、F2為雙曲線C:x2﹣y2=1的左、右焦點,點P在C上,∠F1PF2=60°,則|PF1|•|PF2|=( 。
A.2B.4C.6D.8
B
法1.由余弦定理得
cos∠F1PF2=
∴|PF1|•|PF2|=4
法2; 由焦點三角形面積公式得:
∴|PF1|•|PF2|=4;
故選B.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

雙曲線的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知點F1、F2分別是雙曲線(a>0,b>0)的左、右焦點,過F1且垂直于x軸的直線與雙曲線交于A,B兩點,若△ABF2是銳角三角形,則該雙曲線離心率的取值范圍是(  )
A.(1,)B.(,2)
C.(1+,+∞)D.(1,1+)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若雙曲線的離心率為,則其漸近線方程為(  )
A.y=±2x B.y=±x
C.y=±x D.y=±x

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知雙曲線的兩個焦點為F1(-,0)、F2(,0),M是此雙曲線上的一點,且滿足·=0,| |·| |=2,則該雙曲線的方程是             

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

以直線x±2y=0為漸近線,且截直線x-y-3=0所得弦長為的雙曲線方程為(    )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知雙曲線的右焦點為F,若過點F且傾斜角為45°的直線與雙曲線的左支沒有公共點,則此雙曲線離心率的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

雙曲線的左、右焦點分別為,若為其上一點,且,,則雙曲線的離心率為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)P是雙曲線上除頂點外的任意一點,、分別是雙曲線的左、右焦點,△的內(nèi)切圓與邊相切于點M,則(     )
A.5B.4C.2D.1

查看答案和解析>>

同步練習冊答案