已知點(diǎn)P是拋物線= 2x上的動(dòng)點(diǎn),過點(diǎn)P作y軸垂線PM,垂足為M,  點(diǎn)A的坐標(biāo)是,則| PA | + | PM |的最小值是 

A.          B.4            C.               D.5

 

【答案】

C

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P是拋物線y2=16x上的一點(diǎn),它到對(duì)稱軸的距離為12,F(xiàn)是拋物線的焦點(diǎn),則|PF|=
16
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn)O,焦點(diǎn)F在x軸正半軸上,傾斜角為銳角的直線l過F點(diǎn),設(shè)直線l與拋物線交于A、B兩點(diǎn),與拋物線的準(zhǔn)線交于M點(diǎn),
MF
FB
(λ>0)
(1)若λ=1,求直線l斜率
(2)若點(diǎn)A、B在x軸上的射影分別為A1,B1且|
B1F
|,|
OF
|,2|
A1F
|成等差數(shù)列求λ的值
(3)設(shè)已知拋物線為C1:y2=x,將其繞頂點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)90°變成C1′.圓C2:x2+(y-4)2=1的圓心為點(diǎn)N.已知點(diǎn)P是拋物線C1′上一點(diǎn)(異于原點(diǎn)),過點(diǎn)P作圓C2的兩條切線,交拋物線C′1于T,S,兩點(diǎn),若過N,P兩點(diǎn)的直線l垂直于TS,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P是拋物線y2=2x上動(dòng)點(diǎn),求P到直線l:x-y+6=0的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P是拋物線y2=4x的動(dòng)點(diǎn),A(1,0),B(4,2),則|PA|+|PB|的最小值是
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P是拋物線x2=4y上一個(gè)動(dòng)點(diǎn),過點(diǎn)P作圓x2+(y-4)2=1的兩條切線,切點(diǎn)分別為M,N,則線段MN長(zhǎng)度的最小值是
33
3
33
3

查看答案和解析>>

同步練習(xí)冊(cè)答案