分別是雙曲線的左,右焦點,若在雙曲線右支上存在點P,滿足,且到直線的距離等于雙曲線的實軸長,則該雙曲線的離心率等于(   )

A.2 B. C. D.

D

解析試題分析:依題意|PF2|=|F1F2|,可知三角形PF2F1是一個等腰三角形,F(xiàn)2在直線PF1的投影是其中點,由勾股定理可知|PF1|=2=4b
根據(jù)雙曲定義可知4b-2c=2a,整理得c=2b-a,代入c2=a2+b2整理得3b2-4ab=0,求得
 =;∴e===,故選D.
考點:本題主要考查雙曲線的標準方程,幾何性質。
點評:典型題,涉及雙曲線焦點的問題,注意運用雙曲線定義。注意掌握a,b,c,e的關系。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:單選題

F1,F2分別是雙曲線的左、右焦點,過F1的直線l與雙曲線的左、右兩支分別交于A、B兩點.若ΔABF2是等邊三角形,則該雙曲線的離心率為
A. 2    B.    C.   D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

如圖,已知拋物線的焦點F恰好是雙曲線的右焦點,且兩條曲線的交點的連線過F,則該雙曲線的離心率為(    )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

設雙曲線的虛軸長為2,焦距為,則雙曲線的漸近線方程為(    )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知,動點滿足:,則動點的軌跡為(     )

A.橢圓B.雙曲線C.拋物線D.線段

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

曲線與曲線的(   )

A.離心率相等B.焦距相等C.焦點相同D.準線相同

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知雙曲線的漸近線經(jīng)過二、四象,直線過點且垂直于直線,則直線方程為( )

A. B.
C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

我們把焦點相同,且離心率互為倒數(shù)的橢圓和雙曲線稱為一對“相關曲線”.已知是一對相關曲線的焦點,是它們在第一象限的交點,當時,這一對相關曲線中雙曲線的離心率是( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

如圖,A,B,C分別為的頂點與焦點,若∠ ABC=90°,則該橢圓的離心率為     (  )

A. B.1- C.-1 D.

查看答案和解析>>

同步練習冊答案