20.已知集合A={1,2a},B={a,b},若A∩B={$\frac{1}{4}$},則A∪B為{-2,1,$\frac{1}{4}$}.

分析 由A∩B={$\frac{1}{4}$},可得$\frac{1}{4}$∈A,$\frac{1}{4}$∈B,進而得到a,b的值,再由并集的定義可得所求.

解答 解:集合A={1,2a},B={a,b},
若A∩B={$\frac{1}{4}$},則2a=$\frac{1}{4}$,
即有a=-2,b=$\frac{1}{4}$.
則A∪B={-2,1,$\frac{1}{4}$}.
故答案為:{-2,1,$\frac{1}{4}$}.

點評 本題考查集合的運算,主要是交集和并集的運算,考查運算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在△ABC中,$\overrightarrow{AB}•\overrightarrow{AC}=4$,sinB=cosAsinC,E為線段AC的中點,則$\overrightarrow{EB}•\overrightarrow{EA}$的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某小學(xué)對五年級的學(xué)生進行體質(zhì)測試,已測得五年級一班30名學(xué)生的跳遠成績(單位:cm),用莖葉圖統(tǒng)計如圖,男生成績在175cm以上(包括175cm)定義為合格,成績在175cm以下(不含175cm)定義為“不合格”;女生成績在165以上(包括165cm)定義為“合格”,成績在165cm以下(不含165cm)定義為“不合格”.
(1)求男生跳遠成績的中位數(shù).
(2)以此作為樣本,估計該校五年級學(xué)生體質(zhì)的合格率.
(3)根據(jù)男女生的不同,用分層抽樣的方法從該班學(xué)生中抽取1個容量為5的樣本,再從這個樣本中抽取2人,求取出的2人都是女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知點A(-1,-1),B(1,3),C(2,λ),若$\overline{AB}∥\overline{AC}$,則實數(shù)λ=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),且在[-3,-2]上是減函數(shù),若α,β是銳角三角形的兩個內(nèi)角,則(  )
A.f(sinα)>f(sinβ)B.f(sinα)<f(cosβ)C.f(cosα)<f(cosβ)D.f(sinα)>f(cosβ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如圖,要測量河對岸C,D兩點間的距離,在河邊一側(cè)選定兩點A,B,測出AB的距離為20$\sqrt{3}$m,∠DAB=75°,∠CAB=30°,AB⊥BC,∠ABD=60°.則C,D兩點之間的距離為10$\sqrt{10}$ m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若函數(shù)y=f(x)是定義在R上的偶函數(shù),在(-∞,0]上是減函數(shù),且f(2)=0,則使函數(shù)值y<0的x取值范圍為( 。
A.(-2,2)B.(2,+∞)C.(-∞,2)D.(-∞,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的焦點為F1,F(xiàn)2,點P是雙曲線上一點,滿足$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0,tan∠P{F_1}{F_2}=\sqrt{3}$,則雙曲線C的離心率為( 。
A.$\sqrt{3}$B.$1+\sqrt{3}$C.3$\sqrt{3}$D.$3+\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.滿足集合M⊆{1,2,3,4},且M∩{1,2,4}={1,4}的集合M的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案