【題目】已知函數(shù) (為自然對(duì)數(shù)的底數(shù)).

(1)求函數(shù)的極值;

(2)當(dāng)時(shí),若直線與曲線沒(méi)有公共點(diǎn),求的最大值.

【答案】(1)見(jiàn)解析(2)的最大值為1.

【解析】分析:(1)先求導(dǎo),再對(duì)a分類(lèi)討論,求函數(shù)的單調(diào)性得到函數(shù)的極值.(2)先把問(wèn)題轉(zhuǎn)化為關(guān)于的方程上沒(méi)有實(shí)數(shù)解,再轉(zhuǎn)化為方程化為沒(méi)有實(shí)數(shù)解,得k的最大值.

詳解:(1) ,

①當(dāng)時(shí), , 上的增函數(shù),所以函數(shù)無(wú)極值.

②當(dāng)時(shí),令,得.

, .

所以上單調(diào)遞減,在上單調(diào)遞增,

處取得極小值,且小值為,無(wú)極大值.

綜上,當(dāng)時(shí),函數(shù)無(wú)極小值;

當(dāng)處取得極小值,無(wú)極大值.

(2)當(dāng)時(shí), .

直線與曲線沒(méi)有公共點(diǎn),

等價(jià)于關(guān)于的方程上沒(méi)有實(shí)數(shù)解,

即關(guān)于的方程上沒(méi)有實(shí)數(shù)解.

①當(dāng)時(shí),方程可化為,在上沒(méi)有實(shí)數(shù)解.

②當(dāng)時(shí),方程化為.

,則有

,得,

當(dāng)變化時(shí), 的變化情況如下表:

-1

-

0

+

當(dāng)時(shí), ,同時(shí)當(dāng)趨于時(shí), 趨于,

從而的取值范圍為.

所以當(dāng)時(shí),方程無(wú)實(shí)數(shù)解,

解得的取值范圍是.

綜上,得的最大值為1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋中混裝著9個(gè)大小相同的球(編號(hào)不同),其中5只白球,4只紅球,為了把紅球與白球區(qū)分開(kāi)來(lái),采取逐只抽取檢查,若恰好經(jīng)過(guò)5次抽取檢查,正好把所有白球和紅球區(qū)分出來(lái)了,則這樣的抽取方式共有__________種(用數(shù)字作答) .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有3名男生,4名女生,在下列不同要求下,求不同的排列方法總數(shù).

(1)全體排成一行,其中男生必須排在一起;

(2)全體排成一行,男、女各不相鄰;

(3)全體排成一行,其中甲不在最左邊,乙不在最右邊;

(4)全體排成一行,其中甲、乙、丙三人從左至右的順序不變.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓經(jīng)過(guò)點(diǎn),且離心率為

(I)求橢圓的方程;

(Ⅱ)過(guò)橢圓的右頂點(diǎn)做相互垂直的兩條直線,分別交橢圓、異于點(diǎn)),問(wèn)直線是否通過(guò)定點(diǎn)?若過(guò)定點(diǎn),求出定點(diǎn)坐標(biāo)若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)一批產(chǎn)品的長(zhǎng)度(單位:毫米)進(jìn)行抽樣檢測(cè),如圖為檢測(cè)結(jié)果的頻率分布直方圖.根據(jù)標(biāo)準(zhǔn),產(chǎn)品長(zhǎng)度在區(qū)間[20,25)上為一等品,在區(qū)間[15,20)和[25,30)上為二等品,在區(qū)間[10,15)和[30,35]上為三等品.用頻率估計(jì)概率,現(xiàn)從該批產(chǎn)品中隨機(jī)抽取1件,則其為二等品的概率是(

A.0.09
B.0.20
C.0.25
D.0.45

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為調(diào)查乘客的候車(chē)情況,公交公司在某站臺(tái)的60名候車(chē)乘客中隨機(jī)抽取15人,將他們的候車(chē)時(shí)間(單位:分鐘)作為樣本分成5組,如下表所示:

組別

候車(chē)時(shí)間

人數(shù)

[0,5)

2

[5,10)

6

[10,15)

4

[15,20)

2

[20,25]

1

(Ⅰ)求這15名乘客的平均候車(chē)時(shí)間;
(Ⅱ)估計(jì)這60名乘客中候車(chē)時(shí)間少于10分鐘的人數(shù);
(Ⅲ)若從上表第三、四組的6人中隨機(jī)抽取2人作進(jìn)一步的問(wèn)卷調(diào)查,求抽到的兩人恰好來(lái)自不同組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是兩個(gè)不共線的非零向量.

1)設(shè),,那么當(dāng)實(shí)數(shù)t為何值時(shí),AB,C三點(diǎn)共線;

2)若,的夾角為60°,那么實(shí)數(shù)x為何值時(shí)的值最小?最小值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某同學(xué)用五點(diǎn)法畫(huà)函數(shù)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如下表:

1)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整;函數(shù)的解析式為 (直接寫(xiě)出結(jié)果即可);

2)根據(jù)表格中的數(shù)據(jù)作出一個(gè)周期的圖象;

3)求函數(shù)在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機(jī)對(duì)心肺疾病入院的人進(jìn)行問(wèn)卷調(diào)查,得到了如下的列聯(lián)表:

患心肺疾病

不患心肺疾病

合計(jì)

A

合計(jì)

B

(1)根據(jù)已知條件求出上面的列聯(lián)表中的A和B;用分層抽樣的方法在患心肺疾病的人群中抽人,其中男性抽多少人?

(2)為了研究心肺疾病是否與性別有關(guān),請(qǐng)計(jì)算出統(tǒng)計(jì)量,并說(shuō)明是否有的把握認(rèn)為心肺疾病與性別有關(guān)?

下面的臨界值表供參考:

參考公式: ,其中.

查看答案和解析>>

同步練習(xí)冊(cè)答案