如圖,在多面體ABC-A1B1C1中,AA1⊥平面ABC,AA1⊥平面ABC,AA1∥=BB1,AB=AC=AA1=,B1C1∥=
(1)求證:A1B1⊥平面AA1C;
(2)若D是BC的中點,求證:B1D∥平面A1C1C;
(3)若BC=2,求幾何體ABC-A1B1C1的體積.

【答案】分析:(1)根據(jù)勾股定理的逆定理,可得AB⊥AC,再由線面垂直的性質(zhì)得到AB⊥AA1,從而得到AB⊥平面AA1C,最后證明四邊形A1ABB1是平行四邊形,可得AB∥A1B1,,所以A1B1⊥平面AA1C;
(2)利用一組對邊平行且相等,證出四邊形B1C1CD是平行四邊形,從而B1D∥C1C,再用線面平行的判定定理,即可證出B1D∥平面A1C1C;
(3)連接AD、C1D,將幾何體ABC-A1B1C1的體積分割成四棱錐C-DAA1C1和三棱柱ABD-A1B1C1,則不難用柱體、錐體的體積公式求出它的體積.
解答:解:(1)∵AB=AC=,∴AB2+AC2=BC2,可得AB⊥AC
又∵AA1⊥平面ABC,AB?平面ABC,∴AB⊥AA1
∵AC、AA1?平面AA1C,AC∩AA1=A
∴AB⊥平面AA1C,
又∵AA1∥BB1,且AA1=BB1,
∴四邊形A1ABB1是平行四邊形,可得AB∥A1B1
∴A1B1⊥平面AA1C;
(2)∵B1C1∥BC且B1C1=,D為BC中點
∴B1C1∥DC且B1C1=DC,
∴四邊形B1C1CD是平行四邊形,可得B1D∥C1C
∵B1D?平面A1C1C,C1C?平面A1C1C
∴B1D∥平面A1C1C;
(3)連接AD、C1D,
∵AD⊥BC,AA1⊥BC,且AD、AA1是平面DAA1C1內(nèi)的相交直線
∴BC⊥平面DAA1C1,可得CD是四棱錐C-DAA1C1的高
由(1)(2)的證明可知:ABD-A1B1C1是直三棱柱
∴幾何體ABC-A1B1C1的體積為:V=V四棱錐C-DAA1C1+V三棱柱ABD-A1B1C1=+=
點評:本題給出由一個四棱錐和一個三棱柱組成的幾何體,要求證明線面垂直和線面平行,并且求幾何體體積.著重考查了線面垂直、線面平行的判定與性質(zhì)和組合幾何體的體積求法等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在多面體ABC-A1B1C1中,AA1⊥平面ABC,AA1
.
BB1,AB=AC=AA1=
2
2
BC,B1C1
.
1
2
BC

(1)求證:A1B1⊥平面AA1C;
(2)求證:AB1∥平面A1C1C;
(3)求二面角C1-A1C-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在多面體ABC-A1B1C1中,四邊形A1ABB1是正方形,AB=AC,BC=
2
AB
,B1C1
.
.
1
2
BC
,二面角A1-AB-C是直二面角.
(Ⅰ)求證:AB1∥平面 A1C1C;
(Ⅱ)求BC與平面A1C1C所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•青島二模)如圖,在多面體ABC-A1B1C1中,四邊形ABB1A1是正方形,AC=AB=1,A1C=A1B,B1C1∥BC,B1C1=
12
BC.
(Ⅰ)求證:面A1AC⊥面ABC;
(Ⅱ)求證:AB1∥面A1C1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•合肥一模)如圖,在多面體ABC-A1B1C1中,AA1⊥平面ABC,AA1⊥平面ABC,AA1∥=BB1,AB=AC=AA1=
2
2
BC
,B1C1∥=
1
2
BC

(1)求證:A1B1⊥平面AA1C;
(2)若D是BC的中點,求證:B1D∥平面A1C1C;
(3)若BC=2,求幾何體ABC-A1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•鄭州二模)如圖,在多面體ABC-A1B1C1中,四邊形A1ABB1是正方形,AB=AC,BC=
2
AB,B1C1
.
1
2
BC
,二面角A1-AB-C是直二面角.
(I)求證:A1B1⊥平面AA1C; 
(II)求證:AB1∥平面 A1C1C;
(II)求BC與平面A1C1C所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案