如圖,在四棱錐ABCD-PGFE中,底面ABCD是直角梯形,側(cè)棱垂直于底面,AB//DC,∠ABC=45o,DC=1,AB=2,PA=1.

(Ⅰ)求PD與BC所成角的大。

(Ⅱ)求證:BC⊥平面PAC;

(Ⅲ)求二面角A-PC-D的大。

 

【答案】

(1)60o

(2)根據(jù)題意,由于BC⊥AC,且有PA⊥BC,則可以根據(jù)線面垂直的判定定理來得到結(jié)論。

(3)60 

【解析】

試題分析:(Ⅰ)取的AB中點(diǎn)H,連接DH,易證BH//CD,且BD="CD" 1分

所以四邊形BHDC為平行四邊形,所以BC//DH

所以∠PDH為PD與BC所成角2分

因?yàn)樗倪呅,ABCD為直角梯形,且∠ABC=45o, 所以DA⊥AB

又因?yàn)锳B=2DC=2,所以AD=1, 因?yàn)镽t△PAD、Rt△DAH、Rt△PAH都為等腰直角三角形,所以PD=DH=PH=,故∠PDH=604分

(Ⅰ)連接CH,則四邊形ADCH為矩形, ∴AH=DC  又AB=2,∴BH=1

在Rt△BHC中,∠ABC=45o , ∴CH=BH=1,CB= ∴AD=CH=1,AC=

∴AC2+BC2=AB2   ∴BC⊥AC……6分 又PA平面ABCD∴PA⊥BC ……7分

∵PA∩AC=A∴BC⊥平面PAC  8分

(Ⅲ)如圖,分別以AD、AB、AP為x軸,y軸,z軸建立空間直角坐標(biāo)系,則由題設(shè)可知:

A(0,0,0),P(0,0,1),C(1,1,0),D(1,0,0),

=(0,0,1),=(1,1,-1) 9分

設(shè)m=(a,b,c)為平面PAC的一個(gè)法向量, 則,即

設(shè),則,∴m=(1,-1,0)  10分

同理設(shè)n=(x,y,z) 為平面PCD的一個(gè)法向量,求得n=(1,1,1) 11分

 12分

所以二面角A-PC-D為60 13分

考點(diǎn):空間角和距離的求解

點(diǎn)評:主要是考查了空間中線面角和二面角的平面角的求解,以及線面垂直的判定,屬于基礎(chǔ)題。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,∠ABC=∠BCD=90°,PA=PD=DC=CB=
12
AB,E是PB的中點(diǎn).
(Ⅰ)求證:EC∥平面PAD;
(Ⅱ)求證:BD⊥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,∠DAB=∠ABC=
π2
,且AB=BC=2AD=2,側(cè)面PAB⊥底面ABCD,△PAB是等邊三角形.
(1)求證:BD⊥PC;
(2)求二面角B-PC-D的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面是邊長為a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E為PB中點(diǎn)
(1)求證;平面ACE⊥面ABCD;
(2)求三棱錐P-EDC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐O-ABCD中,底面ABCD四邊長為1的菱形,∠ABC=
π3
,OA⊥底面ABCD,OA=2,M為OA的中點(diǎn).
(1)求三棱錐B-OCD的體積;
(2)求異面直線AB與MD所成角的余弦值;
注:若直線a⊥平面α,則直線a與平面α內(nèi)的所有直線都垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐O-ABCD中,底面ABCD四邊長為1的菱形,∠ABC=
π4
,OA⊥底面ABCD,OA=2,M為OA的中點(diǎn),N為BC的中點(diǎn)
(1)求三棱錐B-OCD的體積;
(2)求異面直線AB與MD所成角的大;
注:若直線a⊥平面α,則直線a與平面α內(nèi)的所有直線都垂直.

查看答案和解析>>

同步練習(xí)冊答案