過(guò)點(diǎn)(4,-3)的直線l在兩坐標(biāo)軸上截距的絕對(duì)值相等,求直線l的方程.

答案:
解析:

  解一:當(dāng)a=b=0時(shí),滿足題意,此時(shí)直線過(guò)原點(diǎn),且過(guò)點(diǎn)(4,-3),所以直線l的方程為3x+4y=0.

  當(dāng)a≠0,b≠0時(shí),同錯(cuò)解中過(guò)程.

  綜上可知,直線l的方程為x+y-1=0,或x-y-7=0,或3x+4y=0.

  正解二:設(shè)直線l的方程為y+3=k(x-4)(k≠0).

  令x=0,得y=-4k-3;令y=0,得x=

  因?yàn)橹本l在兩坐標(biāo)軸上截距的絕對(duì)值相等,

  所以|-4k-3|=,解得k1=-1,k2=1,k3=-

  所以,直線l的方程為x+y-1=0,或x-y-7=0,或3x+4y=0.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,把長(zhǎng)、寬分別為4、3的長(zhǎng)方形ABCD沿對(duì)角線AC折成直二面角.
(Ⅰ)求頂點(diǎn)B和D之間的距離;
(Ⅱ)現(xiàn)發(fā)現(xiàn)BC邊上距點(diǎn)C的
13
處有一缺口E,請(qǐng)過(guò)點(diǎn)E作一截面,將原三棱錐分割成一個(gè)三棱錐和一個(gè)棱臺(tái)兩部分,為使截去部分體積最小,如何作法?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,把長(zhǎng)、寬分別為4、3的長(zhǎng)方形ABCD沿對(duì)角線AC折成直二面角.
精英家教網(wǎng)
(Ⅰ)求三棱錐B-ACD的體積VB-ACD
(Ⅱ)現(xiàn)發(fā)現(xiàn)BC邊上距點(diǎn)C的
13
處有一缺口E,請(qǐng)過(guò)點(diǎn)E作一截面,將原三棱錐分割成一個(gè)三棱錐和一個(gè)棱臺(tái)兩部分,為使截去部分體積最小,如何作法?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年廣東省梅州市高二上學(xué)期期末考試數(shù)學(xué)試卷 題型:選擇題

直線L過(guò)點(diǎn)且與雙曲線有且僅有一個(gè)公共點(diǎn),則這樣的直

線有(    )

A.1 條         B.2條        C.3條       D.4條

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江蘇省模擬題 題型:解答題

如圖,把長(zhǎng)、寬分別為4、3的長(zhǎng)方形ABCD沿對(duì)角線AC折成直二面角.
(Ⅰ)求頂點(diǎn)B和D之間的距離;
(Ⅱ)現(xiàn)發(fā)現(xiàn)BC邊上距點(diǎn)C的處有一缺口E,請(qǐng)過(guò)點(diǎn)E作一截面,將原三棱錐分割成一個(gè)三棱錐和一個(gè)棱臺(tái)兩部分,為使截去部分體積最小,如何作法?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江蘇省無(wú)錫市濱湖區(qū)高考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

如圖,把長(zhǎng)、寬分別為4、3的長(zhǎng)方形ABCD沿對(duì)角線AC折成直二面角.
(Ⅰ)求頂點(diǎn)B和D之間的距離;
(Ⅱ)現(xiàn)發(fā)現(xiàn)BC邊上距點(diǎn)C的處有一缺口E,請(qǐng)過(guò)點(diǎn)E作一截面,將原三棱錐分割成一個(gè)三棱錐和一個(gè)棱臺(tái)兩部分,為使截去部分體積最小,如何作法?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案