【題目】某中學(xué)人力資源部計(jì)劃2016年招聘2名數(shù)學(xué)教師,共5名應(yīng)聘者進(jìn)入最后課堂實(shí)錄環(huán)節(jié).5名數(shù)學(xué)組評(píng)審專家給出評(píng)分如表:
評(píng)審專家/應(yīng)聘老師 | 1 | 2 | 3 | 4 | 5 |
評(píng)審專家A | 93.0 | 90.0 | 88.5 | 89.5 | 82.5 |
評(píng)審專家B | 94.0 | 83.0 | 89.0 | 93.0 | 81.0 |
評(píng)審專家C | 91.0 | 85.0 | 81.5 | 88.0 | 81.0 |
評(píng)審專家D | 92.0 | 91.5 | 81.0 | 94.5 | 87.0 |
評(píng)審專家E | 95.5 | 91.0 | 90.0 | 95.5 | 88.5 |
(Ⅰ)若依據(jù)去掉一個(gè)最高分和一個(gè)最低分規(guī)則計(jì)算應(yīng)聘老師成績(jī),試確定最終應(yīng)聘成功的2名數(shù)學(xué)老師的序號(hào);
(Ⅱ)在課堂實(shí)錄環(huán)節(jié),每名應(yīng)聘老師都需要從5名評(píng)審專家中隨機(jī)選取2名進(jìn)行點(diǎn)評(píng),且每名應(yīng)聘老師的選擇互不影響,設(shè)X表示評(píng)審專家A進(jìn)行點(diǎn)評(píng)的次數(shù),求X的分布列以及數(shù)學(xué)期望;
(Ⅲ)記評(píng)審專家A與評(píng)審專家B給出的評(píng)分的方差分別為 ,試比較 與 的大。ㄖ恍鑼懗鼋Y(jié)論)
【答案】解:(Ⅰ)去掉一個(gè)最高分和一個(gè)最低分后,各應(yīng)聘教師的總分依次為:
教師1:93.0+94.0+92.0=279.0;教師2:90.0+85.0+91.0=266.0;
教師3:88.5+89.0+81.5=259.0;教師4:89.5+93.0+94.5=277.0;
教師5:82.5+81.0+87.0=250.5.
所以最終應(yīng)聘成功的是教師1和教師4.
(Ⅱ)每名應(yīng)聘教師選擇專家A進(jìn)行點(diǎn)評(píng)的概率都是 = ,且每名應(yīng)聘老師的選擇互不影響,
∴專家A進(jìn)行點(diǎn)評(píng)的次數(shù)X服從二項(xiàng)分布 ,
∴P(X=0)=( )5= ,P(X=1)= ( )4= ,P(X=2)= ( )2( )3= ,
P(X=3)= ( )3( )2= ,P(X=4)= ( )4 = ,P(X=5)=( )5= .
所以X的分布列為:
X | 0 | 1 | 2 | 3 | 4 | 5 |
P |
.
(Ⅲ)評(píng)審專家A的平均分 ,
方差為 ,
評(píng)審專家B的平均分 ,方差為
所以 .
【解析】(1)計(jì)算各應(yīng)聘教師的總分即可得出結(jié)論,(2)根據(jù)二項(xiàng)分布的概率公式得出分布列,求出期望,(3)利用方差公式進(jìn)行計(jì)算即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù) (ω>0)的圖象與x軸正半軸交點(diǎn)的橫坐標(biāo)構(gòu)成一個(gè)公差為 的等差數(shù)列,若要得到函數(shù)g(x)=Asinωx的圖象,只要將f(x)的圖象( 。﹤(gè)單位.
A.向左平移
B.向右平移
C.向左平移
D.向右平移
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)y= 與y=ln(1﹣x)的定義域分別為M、N,則M∪N=( )
A.(1,2]
B.[1,2]
C.(﹣∞,1]∪(2,+∞)
D.(﹣∞,1)∪[2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(2﹣a)(x﹣1)﹣2lnx
(1)當(dāng)a=1時(shí),求f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在(0, )上無(wú)零點(diǎn),求a最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y2=2px(p>0),F(xiàn)為其焦點(diǎn),過(guò)點(diǎn)(4,0)作垂直于x軸的直線交拋物線于A,B兩點(diǎn),△ABF的周長(zhǎng)為18.
(1)求拋物線的方程;
(2)過(guò)拋物線上的定點(diǎn) 作兩條關(guān)于直線y=p對(duì)稱的直線分別交拋物線于C,D兩點(diǎn),連接CD,判斷直線CD的斜率是否為定值?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( 。
A.若a∈R,則“ <1”是“a>1”的必要不充分條件
B.“p∧q為真命題”是“p∨q為真命題”的必要不充分條件
C.若命題p:“x∈R,sinx+cosx≤ ”,則¬p是真命題
D.命題“x0∈R,使得x02+2x0+3<0”的否定是“x∈R,x2+2x+3>0”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)= ﹣alnx.
(Ⅰ)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)求函數(shù)y=f(x)的單調(diào)區(qū)間和極值;
(Ⅲ)若函數(shù)f(x)在區(qū)間(1,e2]內(nèi)恰有兩個(gè)零點(diǎn),試求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x<0時(shí),f(x)=(x+1)ex則對(duì)任意的m∈R,函數(shù)F(x)=f(f(x))﹣m的零點(diǎn)個(gè)數(shù)至多有( 。
A.3個(gè)
B.4個(gè)
C.6個(gè)
D.9個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】美索不達(dá)米亞平原是人類文明的發(fā)祥地之一.美索不達(dá)米亞人善于計(jì)算,他們創(chuàng)造了優(yōu)良的計(jì)數(shù)系統(tǒng),其中開平方算法是最具有代表性的.程序框圖如圖所示,若輸入a,n,ξ的值分別為8,2,0.5,(每次運(yùn)算都精確到小數(shù)點(diǎn)后兩位)則輸出結(jié)果為( )
A.2.81
B.2.82
C.2.83
D.2.84
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com