設集合A={x|x2+x-1=0},B={x|ax+1=0},若B
 
?
A,則實數(shù)a的不同取值個數(shù)為
 
個.
考點:集合的包含關系判斷及應用
專題:計算題,集合
分析:化簡確定集合A,由B
 
?
A寫出集合B的可能情況并求a是否存在即可.
解答: 解:集合A={x|x2+x-1=0}={-
1
2
-
5
2
,-
1
2
+
5
2
},
∵B
 
?
A,
則B=∅,{-
1
2
-
5
2
},{-
1
2
+
5
2
},
代入可知實數(shù)a的有3個不同取值.
故答案為:3.
點評:本題考查了集合的化簡及集合間的包含關系,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知全集U={1,2,3,4,5},集合A={x|x2-5x+q=0,x∈U},求q的值及∁UA.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列圖象表示函數(shù)關系y=f(x)的有
 
.(填序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個平面圖形的水平放置的斜二測直觀圖是一個等腰梯形,直觀圖的底角為45°,兩腰和上底邊長均為1,則這個平面圖形的面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1+2x)n的展開式中只有第5項的二項式系數(shù)最大,則展開式中的第2項為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線y=kx+3與圓C:x2+y2=4相交于A,B,若點M在圓C上,且有
OM
=
OA
+
OB
(O為坐標原點),則實數(shù)k的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線
x=tcosθ
y=tsinθ
與圓
x=4+2cosα
y=2sinα
相切,則θ=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以下四個說法中錯誤的是
 

①在△ABC中,A、B、C的對邊分別是a、b、c,若在滿足
a
cosB
=
b
cosA
,則△ABC為等腰三角形;
②數(shù)列{an}首項為a,且滿足an=aqn-1(q≠0),則數(shù)列{an}是等比數(shù)列;
③函數(shù)f(x)=
x2+5
x2+4
的最小值為
5
2

④已知△ABC中,a=4,b=4,∠A=30°,則∠B等于60°或120°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={x|-2<x<1},N={x|x≤-2},則M∪N=
 

查看答案和解析>>

同步練習冊答案