橢圓的右焦點,其右準線與軸的交點為,在橢圓上存在點滿足線段的垂直平分線過點,則橢圓離心率的取值范圍是………………………………………… (       )

A、        B、       C、         D、

 

【答案】

D

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知F1、F2分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0 )的左、右焦點,其左準線與x軸相交于點N,并且滿足,
F1F2
=2
NF1
,|
F1F2
|=2
.設(shè)A、B是上半橢圓上滿足
NA
=λ
NB
的兩點,其中λ∈[
1
5
,
1
3
].
(1)求此橢圓的方程及直線AB的斜率的取值范圍;
(2)設(shè)A、B兩點分別作此橢圓的切線,兩切線相交于一點P,求證:點P在一條定直線上,并求點P的縱坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1、F2分別是橢圓
x2
a2
+
y2
b2
=1(a>0,b>0)
的左、右焦點,其左準線與x軸相交于點N,并且滿足,
F1F2
=2
NF1
,|
F1F2
|=2

(1)求此橢圓的方程;
(2)設(shè)A、B是這個橢圓上的兩點,并且滿足
NA
NB
,當λ∈[
1
5
,
1
3
]
時,求直線AB的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題滿分12分)已知分別是橢圓的左右焦點,其左準線與軸相交于點N,并且滿足,設(shè)A、B是上半橢圓上滿足的兩點,其中.(1)求此橢圓的方程;(2)求直線AB的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題滿分12分)已知分別是橢圓的左右焦點,其左準線與軸相交于點N,并且滿足,設(shè)A、B是上半橢圓上滿足的兩點,其中.(1)求此橢圓的方程;(2)求直線AB的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2008-2009學年北京市東城區(qū)示范校高三(下)3月聯(lián)考數(shù)學試卷(理科)(解析版) 題型:解答題

已知F1、F2分別是橢圓的左、右焦點,其左準線與x軸相交于點N,并且滿足,
(1)求此橢圓的方程;
(2)設(shè)A、B是這個橢圓上的兩點,并且滿足,當時,求直線AB的斜率的取值范圍.

查看答案和解析>>

同步練習冊答案