已知f(x)R上最小正周期為2的周期函數(shù),且當(dāng)0≤x<2時(shí),f(x)x3x,則函數(shù)yf(x)的圖象在區(qū)間[0,6]上與x軸的交點(diǎn)的個數(shù)為(  )

A6 B7 C8 D9

 

B

【解析】當(dāng)x[0,2)時(shí),由f(x)0可得x0x1,即在一個周期內(nèi),函數(shù)的圖象與x軸有兩個交點(diǎn),在區(qū)間[0,6)上共有6個交點(diǎn),當(dāng)x6時(shí),也是符合要求的交點(diǎn),故共有7個不同的交點(diǎn).

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān)訓(xùn)練1-7練習(xí)卷(解析版) 題型:選擇題

已知不等式|x2||x|≤a的解集不是空集,則實(shí)數(shù)a的取值范圍是(  )

A(2) B(,2]

C(2,+∞) D[2,+∞)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān)訓(xùn)練1-4練習(xí)卷(解析版) 題型:填空題

設(shè)α是第二象限角,tan α=-,且sin<cos,則cos______.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān)訓(xùn)練1-3練習(xí)卷(解析版) 題型:選擇題

設(shè)a,b,c,則下列關(guān)系式成立的是(  )

A. << B. < <

C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān)訓(xùn)練1-2練習(xí)卷(解析版) 題型:填空題

已知定義在R上的偶函數(shù)滿足:f(x4)f(x)f(2),且當(dāng)x[0,2]時(shí),yf(x)單調(diào)遞減,給出以下四個命題:

f(2)0;

x=-4為函數(shù)yf(x)圖象的一條對稱軸;

函數(shù)yf(x)[8,10]上單調(diào)遞增;

若方程f(x)m[6,-2]上的兩根為x1x2x1x2=-8.以上命題中所有正確命題的序號為________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān)訓(xùn)練1-2練習(xí)卷(解析版) 題型:選擇題

已知冪函數(shù)yf(x)的圖象過點(diǎn),則log2f(2)的值為(  )

A. B.- C2 D.-2

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān)訓(xùn)練1-1練習(xí)卷(解析版) 題型:填空題

M>N“l(fā)og2M>log2N成立的______條件(充要充分不必要、必要不充分中選擇一個正確的填寫)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān)訓(xùn)練1-11練習(xí)卷(解析版) 題型:選擇題

若實(shí)數(shù)a,b滿足a2b2≤1,則關(guān)于x的方程x22xab0有實(shí)數(shù)根的概率是(  )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題能力測評7練習(xí)卷(解析版) 題型:解答題

受轎車在保修期內(nèi)維修費(fèi)等因素的影響,企業(yè)生產(chǎn)每輛轎車的利潤與該轎車首次出現(xiàn)故障的時(shí)間有關(guān).某轎車制造廠生產(chǎn)甲、乙兩種品牌轎車,保修期均為2年.現(xiàn)從該廠已售出的兩種品牌轎車中各隨機(jī)抽取50輛,統(tǒng)計(jì)數(shù)據(jù)如下:

品牌

首次出現(xiàn)故

障時(shí)間x()

0<x≤1

1<x≤2

x>2

0<x≤2

x>2

轎車數(shù)量()

2

3

45

5

45

每輛利潤

(萬元)

1

2

3

1.8

2.9

將頻率視為概率,解答下列問題:

(1)從該廠生產(chǎn)的甲品牌轎車中隨機(jī)抽取一輛,求其首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率.

(2)若該廠生產(chǎn)的轎車均能售出,記生產(chǎn)一輛甲品牌轎車的利潤為X1,生產(chǎn)一輛乙品牌轎車的利潤為X2,分別求X1,X2的分布列.

(3)該廠預(yù)計(jì)今后這兩種品牌轎車銷量相當(dāng),由于資金限制,只能生產(chǎn)其中一種品牌的轎車.若從經(jīng)濟(jì)效益的角度考慮,你認(rèn)為應(yīng)生產(chǎn)哪種品牌的轎車?說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案