過拋物線y2=4x的焦點(diǎn)作傾斜角為45°的弦AB,O為坐標(biāo)原點(diǎn),則△OAB的面積為


  1. A.
    2
  2. B.
    4
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
C
分析:設(shè)A(x1,y1),B(x2,y2),則S=|OF|•|y1-y2|.直線為x+y-1=0,即x=1-y代入y2=4x得:y2=4(1-y),由此能求出△OAB的面積.
解答:設(shè)A(x1,y1),B(x2,y2),則S=|OF|•|y1-y2|.
直線為x+y-1=0,即x=1-y代入y2=4x得:
y2=4(1-y),即y2+4y-4=0,∴y1+y2=-4,y1y2=-4,
∴|y1-y2|===4 ,
∴S=|OF|•|y1-y2|=×4 =2
故選C.
點(diǎn)評(píng):本題主要考查了拋物線的簡(jiǎn)單性質(zhì),直線與拋物線的位置關(guān)系.在涉及焦點(diǎn)弦的問題時(shí)常需要把直線與拋物線方程聯(lián)立利用韋達(dá)定理設(shè)而不求,進(jìn)而利用拋物線的定義求得問題的答案.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

傾斜角為
π
4
的直線過拋物線y2=4x的焦點(diǎn)且與拋物線交于A,B兩點(diǎn),則|AB|=(  )
A、
13
B、8
2
C、16
D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過拋物線y2=4x的焦點(diǎn)F引兩條互相垂直的直線AB、CD交拋物線于A、B、C、D四點(diǎn).
(1)求當(dāng)|AB|+|CD|取最小值時(shí)直線AB、CD的傾斜角的大小
(2)求四邊形ACBD的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過拋物線y2=4x的焦點(diǎn)F的直線交該拋物線于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).若|AF|=3,則△AOB的面積為
3
2
2
3
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過拋物線y2=4x的焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),點(diǎn)O是坐標(biāo)原點(diǎn),若|AF|=5,則△AOB的面積為( 。
A、5
B、
5
2
C、
3
2
D、
17
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過拋物線y2=4x的焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),A、B兩點(diǎn)在準(zhǔn)線l上的射影分別為M.N,則∠MFN=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案