(2013•湖北)設(shè)a>0,b>0,已知函數(shù)f(x)=
(1)當(dāng)a≠b時(shí),討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)x>0時(shí),稱f(x)為a、b關(guān)于x的加權(quán)平均數(shù).
(1)判斷f(1),f(),f()是否成等比數(shù)列,并證明f()≤f();
(2)a、b的幾何平均數(shù)記為G.稱為a、b的調(diào)和平均數(shù),記為H.若H≤f(x)≤G,求x的取值范圍.

(1)當(dāng)a>b>0時(shí),f′(x)>0,函數(shù)f(x)在(﹣∞,﹣1),(﹣1,+∞)上單調(diào)遞增;
當(dāng)0<a<b時(shí),f′(x)<0,函數(shù)f(x)在(﹣∞,﹣1),(﹣1,+∞)上單調(diào)遞減.
(2)見解析

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),(1) 若的解集是,求實(shí)數(shù)的值;(2) 若恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,把邊長(zhǎng)為10的正六邊形紙板剪去相同的六個(gè)角,做成一個(gè)底面為正六邊形的無(wú)蓋六棱柱盒子,設(shè)其高為h,體積為V(不計(jì)接縫).
(1)求出體積V與高h(yuǎn)的函數(shù)關(guān)系式并指出其定義域;
(2)問(wèn)當(dāng)為多少時(shí),體積V最大?最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)(a是常數(shù),a∈R)
(1)當(dāng)a=1時(shí)求不等式的解集.
(2)如果函數(shù)恰有兩個(gè)不同的零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知二次函數(shù)滿足條件.
(1)求
(2)求在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如果函數(shù)的定義域?yàn)镽,對(duì)于定義域內(nèi)的任意,存在實(shí)數(shù)使得成立,則稱此函數(shù)具有“性質(zhì)”。
(1)判斷函數(shù)是否具有“性質(zhì)”,若具有“性質(zhì)”,求出所有的值;若不具有“性質(zhì)”,說(shuō)明理由;
(2)已知具有“性質(zhì)”,且當(dāng)時(shí),求上有最大值;
(3)設(shè)函數(shù)具有“性質(zhì)”,且當(dāng)時(shí),.若交點(diǎn)個(gè)數(shù)為2013,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知關(guān)于的一元二次函數(shù),設(shè)集合,分別從集合P和Q中隨機(jī)取一個(gè)數(shù)作為
(1)求函數(shù)有零點(diǎn)的概率;
(2)求函數(shù)在區(qū)間上是增函數(shù)的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)命題p:f(x)=在區(qū)間(1,+∞)上是減函數(shù);命題q:x1,x2是方程x2-ax-2=0的兩個(gè)實(shí)根,且不等式m2+5m-3≥|x1-x2|對(duì)任意的實(shí)數(shù)a∈[-1,1]恒成立.若p∧q為真,試求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

函數(shù)f(x)=,若關(guān)于x的方程2[f(x)]2-(2a+3)·f(x)+3a=0有五個(gè)不同的實(shí)數(shù)解,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案