如圖,幾何體中,四邊形為菱形,,,面∥面,、、都垂直于面,且,為的中點,為的中點.
(1)求幾何體的體積;
(2)求證:為等腰直角三角形;
(3)求二面角的大小.
(1)幾何體的體積為;(2)詳見試題解析;(3)二面角的大小為.
解析
試題分析:(1)將幾何體補成如圖的直四棱柱,利用計算幾何體的體積;(2)詳見試題解析;(3)取的中點,因為分別為的中點,所以∥,以分別為軸建立坐標系,利用法向量求二面角的大。
試題解析:(1)將幾何體補成如圖的直四棱柱,則 3分
(2)連接,交于,因為四邊形為菱形,,所以.因為、都垂直于面,,又面∥面,所以四邊形為平行四邊形,則,因為、、都垂直于面,則,所以,所以為等腰直角三角形. 7分
(3)取的中點,因為分別為的中點,所以∥,以分別為軸建立坐標系,則,所以.平面為的中點,平面.由知二面角的大小為.二面角的大小為.
12分
考點:1.幾何體的體積;2.二面角.
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知矩形中,,,將矩形沿對角線把折起,使移到點,且在平面上的射影恰好在上.
(1)求證:;
(2)求證:平面平面;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖示,在底面為直角梯形的四棱椎P ABCD中,AD//BC,ÐABC= 900, PA^平面ABCD,PA= 4,AD= 2,AB=2,BC = 6.
(1)求證:BD^平面PAC ;
(2)求二面角A—PC—D的正切值;
(3)求點D到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在直三棱柱ABC-A1B1C1中,點M是A1B的中點,點N是B1C的中點,連接MN
(Ⅰ)證明:MN//平面ABC;
(Ⅱ)若AB=1,AC=AA1=,BC=2,求二面角A—A1C—B的余弦值的大小
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,AC 是圓 O 的直徑,點 B 在圓 O 上,∠BAC=30°,BM⊥AC交 AC 于點 M,EA⊥平面ABC,F(xiàn)C//EA,AC=4,EA=3,F(xiàn)C=1.
(I)證明:EM⊥BF;
(II)求平面 BEF 與平面ABC 所成銳二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com