3.已知sinα=$\frac{1}{3}$,且α為第二象限角,則tan(π-α)=(  )
A.-$\frac{\sqrt{2}}{4}$B.$\frac{\sqrt{2}}{4}$C.±$\frac{\sqrt{2}}{4}$D.-2$\sqrt{2}$

分析 由條件利用同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式求得cosα和tanα的值,可得tan(π-α)的值.

解答 解:∵sinα=$\frac{1}{3}$,且α為第二象限角,∴cosα=-$\sqrt{{1-sin}^{2}α}$=-$\frac{2\sqrt{2}}{3}$,∴tanα=$\frac{sinα}{cosα}$=-$\frac{\sqrt{2}}{4}$,
則tan(π-α)=-tanα=-(-$\frac{\sqrt{2}}{4}$)=$\frac{\sqrt{2}}{4}$,
故選:B.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式的應(yīng)用,以及三角函數(shù)在各個(gè)象限中的符號(hào),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知函數(shù)f(x)=x2+x,若f(x-2)+f(x)<0成立,則x取值范圍是∅.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.直線y=kx+1-k與橢圓$\frac{x^2}{9}+\frac{y^2}{4}=1$的位置關(guān)系為(  )
A.相交B.相切C.相離D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若函數(shù)y=x2-mx+1在區(qū)間[1,2]上單調(diào)遞增,則實(shí)數(shù)m的取值范圍是( 。
A.(-∞,2]B.(-∞,2)C.(4,+∞)D.[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.點(diǎn)P是橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$上的一點(diǎn),F(xiàn)1和F2是焦點(diǎn),且$∠{F_1}P{F_2}={60^0}$,則△F1PF2的周長(zhǎng)為6,△F1PF2的面積為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.設(shè)命題p:方程x2+2ax+1=0有兩個(gè)不相等的負(fù)根,命題q:不等式x2+2ax+2a≤0的解集為空集,若命題p∧q為假,命題p∨q為真,則a的取值范圍為a≥2或0<a≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)$f(x)=\frac{lnx}{x+1}-\frac{{2{f^'}(1)}}{x}$.
(1)求函數(shù)f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)證明:當(dāng)0<x<1時(shí),(x-1)f(x)<lnx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知拋物線方程為y=4x2,則拋物線的焦點(diǎn)坐標(biāo)為$({0,\frac{1}{16}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.“b>1”是“直線l:x+3y-1=0與雙曲線$\frac{x^2}{4}-\frac{y^2}{b^2}=1({b>0})$的左支有交點(diǎn)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案