如圖,已知平面α⊥平面β,A、B是平面α與平面β的交線上的兩個定點,DA?β,CB?β,且DA⊥α,CB⊥α,AD=4,BC=8,AB=6,在平面α上有一個動點P,使得∠APD=∠BPC,則△PAB的面積的最大值是( 。
分析:利用線面垂直的性質(zhì)可以得到△PAD與△PBC是直角三角形,再由∠APD=∠BPC得到兩直角三角形相似,
過P作PM⊥AB與M,則M為三角形PAB底邊AB上的高,設出AM的長度t,通過解直角三角形把AM用含有t的代數(shù)式表示,代入三角形面積公式后利用配方法求面積的最大值.
解答:解:由題意平面α⊥平面β,A、B是平面α與平面β的交線上的兩個定點,DA?β,CB?β,
且DA⊥α,CB⊥α,∴△PAD與△PBC是直角三角形,又∠APD=∠BPC,
∴△PAD∽△PBC,又AD=4,BC=8,
∴PB=2PA
如圖,

作PM⊥AB,垂足為M,令AM=t,
在兩個Rt△PAM與Rt△PBM中,AM是公共邊及PB=2PA
∴PA2-t2=4PA2-(6-t)2
解得PA2=12-4t
∴PM=
12-4t-t2

∴S=
1
2
×AB×PM=
1
2
×6×
12-4t-t2
=3
12-4t-t2
=3
16-(t+2)2
≤12.
即三角形面積的最大值為12.
點評:本題考查了平面與平面垂直的性質(zhì),考查了學生的空間想象能力,解答此題的關鍵是借助于三角形相似尋找關系,是中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

9、如圖,已知四邊形ABCD是平行四邊形,點P是平面ABCD外的一點,則在四棱錐P-ABCD中,M是PC的中點,在DM上取一點G,過G和AP作平面交平面BDM于GH.
求證:AP∥GH.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知三棱錐A-BCD的底面是等邊三角形,三條側(cè)棱長都等于1,且∠BAC=30°,M,N分別在棱AC和AD上.
(1)將側(cè)面沿AB展開在同一個平面上,如圖②所示,求證:∠BAB′=90°.
(2)求BM+MN+NB的最小值.
(3)當BM+MN+NB取得最小值時,證明:CD∥平面BMN

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知直角梯ACDE所在的平面垂直于平ABC,∠BAC=∠ACD=90°,∠EAC=60°,AB=AC=AE.
(Ⅰ)P是線段BC中點,證明DP∥平面EAB;
(Ⅱ)求平面EBD與平面ABC所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:044

如圖,已知平面a與平面交于a,bb內(nèi)ba交于Ac在內(nèi),且ca,求證b、c是異面直線

 

查看答案和解析>>

科目:高中數(shù)學 來源:數(shù)學教研室 題型:044

如圖,已知平面a與平面交于abb內(nèi)ba交于A,c在內(nèi),且ca,求證b、c是異面直線

 

查看答案和解析>>

同步練習冊答案