16.已知函數(shù)f(x)=asinx+bcosx(a,b為常數(shù),a≠0,x∈R)在x=$\frac{π}{3}$處取得最大值,則函數(shù)y=f(x+$\frac{π}{3}$)是( 。
A.奇函數(shù)且它的圖象關(guān)于點(π,0)對稱
B.奇函數(shù)且它的圖象關(guān)于點($\frac{3π}{2}$,0)對稱
C.偶函數(shù)且它的圖象關(guān)于點($\frac{3π}{2}$,0)對稱
D.偶函數(shù)且它的圖象關(guān)于點(π,0)對稱

分析 首先,根據(jù)已知得到f(x)=$\sqrt{{a}^{2}+^{2}}$sin(x+θ),然后根據(jù)最值正弦函數(shù)圖象的性質(zhì)得到θ=2kπ+$\frac{π}{6}$(k∈Z),再化簡函數(shù)f(x+$\frac{π}{3}$),從而求解問題.

解答 解:∵f(x)=asinx+bcosx=$\sqrt{{a}^{2}+^{2}}$sin(x+θ),在x=$\frac{π}{3}$處取得最大值,
∴$\frac{π}{3}$+θ=$\frac{π}{2}$+2kπ(k∈Z),則θ=2kπ+$\frac{π}{6}$(k∈Z),
∴f(x)=$\sqrt{{a}^{2}+^{2}}$sin(x+$\frac{π}{6}$),
∴f(x+$\frac{π}{3}$)=$\sqrt{{a}^{2}+^{2}}$sin(x+$\frac{π}{2}$)=$\sqrt{{a}^{2}+^{2}}$cosx,
∴該函數(shù)是偶函數(shù)且它的圖象關(guān)于點($\frac{3π}{2}$,0)對稱.
故選:C.

點評 本題重點考查了輔助角公式、三角函數(shù)的最值、函數(shù)的基本性質(zhì)等知識,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.圓心在點C(8,-3),且經(jīng)過點P(5,1)的圓的標(biāo)準(zhǔn)方程為(  )
A.(x-8)2+(y-3)2=25B.(x-8)2+(y+3)2=5C.(x-8)2+(y-3)2=5D.(x-8)2+(y+3)2=25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)集合M={0,1},N={1,2,3},映射f:M→N使對任意的x∈M,都有x+f(x)是奇數(shù),則這樣的映射f的個數(shù)是(  )
A.9B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(2x)的定義域為[0,1],則f(log2x)的定義域為( 。
A.[0,1]B.[1,2]C.[2,4]D.[-1,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)等差數(shù)列{an}的前n項和為Sn,若2a7=5+a9,則S9的值為( 。
A.27B.36C.45D.54

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=x2+(a-1)x+b+1,當(dāng)x∈[b,a]時,函數(shù)f(x)的圖象關(guān)于y軸對稱,數(shù)列{an}的前n項和為Sn,且Sn=f(n+1)-1
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=$\frac{{a}_{n}}{{2}^{n}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知向量$\overrightarrow a$,$\overrightarrow b$滿足|${\overrightarrow a}$|=2,|${\overrightarrow b}$|=3,且$\overrightarrow a$與$\overrightarrow a$+$\overrightarrow b$夾角的余弦值為$\frac{1}{3}$,則$\overrightarrow a$•$\overrightarrow b$可以是( 。
A.4B.-3C.$-2\sqrt{3}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{4-x}{ax}$+lnx.
(1)當(dāng)a=1時,求f(x)的單調(diào)區(qū)間;
(2)若函數(shù)g(x)=f(x)-$\frac{x}{a}$在區(qū)間(1,3)上不單調(diào),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知點A(m,n)是拋物線M:y2=2px(p>0)上的動點,點B是圓C:(x-2)2+y2=1上的動點,當(dāng)且僅當(dāng)m=$\frac{3}{2}$時,|AB|取得最小值.
(1)求拋物線方程;
(2)已知等邊三角形△ABC的三個頂點在拋物線M上,△ABC的重心Q落在雙曲線$\frac{{x}^{2}}{8}$-$\frac{9{y}^{2}}{8}$=1上,求點Q坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案